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 a b s t r a c t

Formation control of quadrotors is particularly challenging under external disturbances and dynamic mission 
requirements. This paper introduces a hybrid control framework that combines fixed-time control with deep 
reinforcement learning (DRL) to achieve adaptive and robust multi-quadrotor formation control. A fixed-time 
disturbance observer (FTDO) is designed to accurately estimate disturbances, while a fully distributed fast non-
singular terminal sliding mode controller ensures fixed-time convergence of both translational and rotational 
dynamics without singularities. To enhance adaptivity, a DRL-based mechanism enables online parameter tun-
ing, thereby improving flight performance without compromising system stability. Both simulations and real-
world experiments validate the effectiveness of the proposed framework, showing an average 50% reduction in 
consensus tracking error compared with non-adaptive baselines.

1.  Introduction

In recent years, multi-quadrotor technology has attracted growing 
attention in applications such as search and rescue [1], post-disaster 
relief [2], environmental monitoring [3], and logistics delivery [4]. De-
spite rapid progress, enabling autonomous flight for multiple quadrotors 
still faces several critical technical and theoretical challenges, including 
cooperative localization, 3D map reconstruction, obstacle avoidance, 
and formation control. Cooperative localization allows multiple agents 
to estimate their positions by sharing relative measurements and sensor 
data, offering greater accuracy and robustness than individual localiza-
tion, particularly in GPS-denied or cluttered environments [5,6]. Sim-
ilarly, cooperative 3D reconstruction enables agents to collaborate in 
sensing, exchanging, and fusing spatial information to generate a com-
prehensive environmental model, thereby improving accuracy, spatial 
coverage, and robustness in large-scale or complex scenarios [7,8]. Af-
ter building a 3D map, clustering algorithms can group sensor-detected 
objects into obstacles, making cooperative obstacle avoidance essen-
tial for safe navigation. By sharing perception and coordinating maneu-
vers, multiple agents can reduce collision risks and improve efficiency 
in dynamic environments compared with independent avoidance strate-
gies [9,10]. Obstacle avoidance ensures collision-free trajectories, while 
cooperative control guarantees that each quadrotor tracks its assigned 
trajectory within the specified time to accomplish the mission. Com-
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pared with single-quadrotor systems, multi-quadrotor systems exhibit 
superior capabilities in executing complex and large-scale tasks. Conse-
quently, consensus-based formation control is vital for maintaining coor-
dinated behavior among agents and enabling them to preserve a desired 
formation under dynamic environments and task requirements [11,12].

Among the challenges associated with multi-quadrotor formation 
flight, this paper focuses on the problem of consensus control. Consid-
erable research has been conducted in this field. For example, Wang et 
al. [13] investigated a fully distributed dynamic event-triggered con-
trol scheme for quadrotors subject to unknown perturbations and in-
put saturation, while Khodaverdian et al. [14] proposed a predictor-
based sliding mode controller (SMC) for formation flight. To address 
the impact of uncertainties and external disturbances, Liu et al. [15] 
developed a finite-time adaptive control protocol, Zhang et al. [16] 
designed a prescribed finite-time distributed controller with aperiodic 
updates based on fuzzy logic, and Nie et al. [17] introduced a dis-
tributed asynchronous SMC method for multi-agent systems. Among 
these approaches, sliding mode control has attracted particular attention 
due to its robustness, fast response, and relatively simple design. Sev-
eral studies have extended SMC-based frameworks for multi-quadrotor 
applications. Liang et al. [18] combined backstepping with SMC for
multi-aircraft aerial transportation, while Hou et al. [19] developed 
an adaptive SMC method for trajectory tracking under environmen-
tal uncertainties. Liang et al. [20] further enhanced quadrotor func-
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$\kappa _{\rho 1}=\frac {\sqrt {2^{(p_3+p_4)/p_4}}}{k_{\rho 2}}$


$\kappa _{\rho 2}=\frac {k_{\rho 1}\sqrt {2^{p_1/p_2 + p_3/p_4}}}{k_{\rho 2}}$


$e_\rho $


$\mathcal {T}_{\rho 3}$


\begin {align}\mathcal {T}_{\rho 3} = \frac {2p_3}{(p_3-p_4)\kappa _{\rho 1}^{p_4/p_3}}+\frac {2p_2p_3}{\bracketsS {p_1p_4-p_2p_3}\kappa _{\rho 2}^{p_4/p_3}}.\end {align}


$\mathcal {T}_{\rho } \leq \mathcal {T}_{\rho 1} + \mathcal {T}_{\rho 2} + \mathcal {T}_{\rho 3}$


$s=\dot {x} + cx^p$


$c > 0$


$0 < p < 1$


$s$


$\dot {s}=\ddot {x} + cpx^{p-1}\dot {x}$


$\dot {s}$


$x = 0$


$p - 1 < 0$


$\frac {p_3+p_4}{2p_4}\cdot \frac {p_4}{p_3}=\frac {p_3+p_4}{2p_3}\in (0, 1)$


$\frac {1}{2}\bracketsS {\frac {p_1}{p_2}+\frac {p_3}{p_4}}\cdot \frac {p_4}{p_3}=\frac {1}{2}\bracketsS {\frac {p_1p_4}{p_2p_3}+1}>1$


$\frac {p_1}{p_2} > \frac {p_3}{p_4} > 1$


\begin {align}\label {chap6::obs_outer} \dot {z}_{\eta 1,i}&=\aleph _{\eta ,i}m_{\eta 1,i}\sig {\tilde {e}_{\eta 1,i}}{\alpha _1}+(1-\aleph _{\eta ,i})m_{\eta 1,i}\sig {\tilde {e}_{\eta 1,i}}{\beta _1}+z_{\eta 2,i},\nonumber \\ \dot {z}_{\eta 2,i}&=\aleph _{\eta ,i}m_{\eta 2,i}\sig {\tilde {e}_{\eta 1,i}}{\alpha _2}+(1-\aleph _{\eta ,i})m_{\eta 2,i}\sig {\tilde {e}_{\eta 1,i}}{\beta _2}+z_{\eta 3,i}-\frac {k_t}{m_i}\dot {\eta }_i+u_{\eta ,i},\nonumber \\ \dot {z}_{\eta 3,i}&=\aleph _{\eta ,i}m_{\eta 3,i}\sig {\tilde {e}_{\eta 1,i}}{\alpha _3}+(1-\aleph _{\eta ,i})m_{\eta 3,i}\sig {\tilde {e}_{\eta 1,i}}{\beta _3},\end {align}


$z_{\eta 1,i}$


$z_{\eta 2,i}$


$z_{\eta 3,i}$


$e_{\eta , i}$


$\dot {e}_{\eta , i}$


$\Delta _{\eta , i}$


$\tilde {e}_{\eta 1,i}=e_{\eta ,i}-z_{\eta 1,i}$


$e_{\eta ,i}$


$\aleph _{\eta , i}$


$\aleph _{\eta ,i}= 0 \mbox { if } ||\tilde {e}_{\eta ,i,1}||_2 > e_{\eta ,i}^* \mbox { else } 1$


$e_{\eta ,i}^*$


$m_{\eta 1,i}$


$m_{\eta 2,i}$


$m_{\eta 3,i}$


$\Gamma _{m,\eta ,i}=\begin {bmatrix} -m_{\eta 1,i} & 1 & 0 \\ -m_{\eta 2,i} & 0 & 1 \\ -m_{\eta 3,i} & 0 & 0 \end {bmatrix}$


$\Delta _{\eta , i}$


$\mathcal {T}_{\eta 1, i}$


$\Omega _{\eta , i}$


$i$


\begin {align}\label {smeta} s_{\eta ,i}=e_{\eta ,i} + k_{\eta {1,i}}e_{\eta ,i}^{\frac {q_1}{q_2}} + k_{\eta {2,i}}\dot {e}_{\eta , i}^{\frac {q_3}{q_4}},\end {align}


$k_{\eta {1.i}} > 0$


$k_{\eta {2,i}} > 0$


$q_1$


$q_2$


$q_3$


$q_4$


$\frac {q_1}{q_2}>\frac {q_3}{q_4}>1\mbox { and }2>\frac {q_3}{q_4}>1$


$s_{\eta , i}$


\begin {align}u_{\eta ,i,eq}=-\frac {1}{b_i+d_i}\left [-\frac {\bracketsS {b_i+d_i}k_{t,i}}{m_i}\dot {\eta }_i-\Lambda _{i0}+\frac {q_4}{q_3k_{\eta {2,i}}}\dot {\eta }_i^{2-\frac {q_3}{q_4}}\circ \left (\textbf {I}_3-\frac {q_1k_{\eta {1.i}}}{q_2}e_{\eta ,i}^{\frac {q_1}{q_2}-1}\right )\right ].\end {align}


\begin {align}u_{\eta ,i,sw}=&-\frac {1}{b_i+d_i}\left [\bracketsS {b_i+d_i}z_{\eta 3,i}+\sum _{i=1}^{N}{a_{ij}z_{\eta 3,j}}+k_{\eta 3,i}\sgn {(s_{\eta ,i})}-k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}\right ],\end {align}


$k_{\eta 3,i}$


$k_{\eta 4i}$


$q_5 > q_6 > 1$


\begin {align}\label {chap6::ctrl_outer} u_{\eta ,i}=u_{\eta ,i,eq}+u_{\eta ,i,sw}.\end {align}


$\Delta _i$


$s_{\eta , i}$


$i=1,2,\ldots , N$


$V_{\eta 1}=\frac {1}{2}\sum _{i=1}^{N}{s_{\eta ,i}^\top s_{\eta ,i}}$


$V_{\eta 1}$


\begin {align}\dot {V}_{\eta 1} =\sum _{i=1}^{N}{s_{\eta ,i}^\top \left (\dot {e}_{\eta ,i} + \frac {q_1k_{\eta {1.i}}}{q_2}e_{\eta ,i}^{\frac {q_1}{q_2}-1}\circ \dot {e}_{\eta ,i}+\frac {q_3k_{\eta 3,i}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}\circ \ddot {e}_{\eta ,i}\right )}.\end {align}


$\dot {V}_{\eta 1}$


\begin {align}\dot {V}_{\eta 1} =&\sum _{i=1}^{N}{s_{\eta ,i}^\top \left \{\dot {e}_{\eta ,i} + \frac {q_1k_{\eta {1.i}}}{q_2}e_{\eta ,i}^{\frac {q_1}{q_2}-1}\circ \dot {e}_{\eta ,i}\right .} \nonumber \\ &+\frac {q_3k_{\eta 3,i}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}\left [-\frac {(b_i+d_i)k_{t,i}}{m_i}\dot {\eta }_i+(b_i+d_i)u_{\eta ,i}-\Lambda _{i0}+(b_i+d_i)\Delta _{\eta ,i}-\sum _{j=i}^{N}{a_{ij}\Delta _{\eta ,j}}\right ]\Bigg \}\nonumber \\ =&\sum _{i=1}^{N}s_{\eta ,i}^\top \left \{\frac {q_3k_{\eta {2,i}}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}\circ \left [(b_i+d_i)\bracketsS {\Delta _{\eta ,i}-z_{\eta 3,i}}+\sum _{j=i}^{N}{a_{ij}\bracketsS {z_{\eta 3,j}-\Delta _{\eta ,j}}}\right ]\right \}.\end {align}


$\Delta _{\eta ,i}$


$\tilde {\Delta }_{\eta ,i}=\Delta _{\eta ,i}-z_{\eta 3,i}$


$k_{\eta 0, i}=\frac {q_3k_{\eta {2,i}}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}$


$\dot {V}_{\eta 1}$


\begin {align}\dot {V}_{\eta 1}=-\sum _{i=1}^{N}k_{\eta 0, i}^\top \circ s_{\eta ,i}^\top \left \{\left [k_{\eta 3,i}\sgn {(s_{\eta ,i})}+k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}-(b_i+d_i)\tilde {\Delta }_{\eta ,i}-\sum _{j=i}^{N}{a_{ij}\tilde {\Delta }_{\eta ,j}}\right ]\right \}.\end {align}


$k_{\eta 0, i}$


$k_{\eta 0, i}$


$k_{\eta , i}$


\begin {align}\label {eq36} \dot {V}_{\eta 1}&\leq -\sum _{i=1}^{N}k_{\eta , i} s_{\eta ,i}^\top \Big \{\Big [k_{\eta 3,i}\sgn {(s_{\eta ,i})}+k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}-(b_i+d_i)\tilde {\Delta }_{\eta ,i}-\sum _{j=i}^{N}{a_{ij}\tilde {\Delta }_{\eta ,j}}\Big ]\Big \}\nonumber \\ &=-\sum _{i=1}^{N}k_{\eta , i} s_{\eta ,i}^\top \Big [k_{\eta 3,i}\sgn {(s_{\eta ,i})}+k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}\Big ]=\notag \\&-\sum _{i=1}^{N}k_{\eta , i}\Big [k_{\eta 3,i}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}}+k_{\eta 4i}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}^{1+\frac {q_5}{q_6}}}\Big ]\\ &\leq -\sum _{i=1}^{N}k_{\eta , i}\Big [k_{\eta 3,i}||s_{\eta ,i}||_2^\frac {1}{2}+k_{\eta 4i}||s_{\eta ,i}||_2^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}}\Big ]\notag \\&\leq -\underline {k}_{\eta 3}\sum _{i=1}^{N}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}}-\underline {k}_{\eta 4}\sum _{i=1}^{N}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}^{1+\frac {q_5}{q_6}}},\notag \end {align}


$\underline {k}_{\eta 3}=\min {(k_{\eta , i}, k_{\eta 3,i})}$


$\underline {k}_{\eta 4}=\min {(k_{\eta , i}, k_{\eta 4i})}$


$k_{\eta ,i} = k_{\eta 3,i} - (b_i+d_i)||\tilde {\Delta }_{\eta ,i}||_2 - \sum _{j=1}^{N}{a_{ij}||\tilde {\Delta }_{\eta ,j}||_2} > 0$


$i=1,2,\ldots , N$


\begin {align}\dot {V}_{\eta 1} &\leq -\underline {k}_{\eta 3}\sum _{i=1}^{N}{\bracketsS {||s_{\eta ,i}||_2^2}^{\frac {1}{2}}}-\underline {k}_{\eta 4}\sum _{i=1}^{N}{\bracketsS {||s_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}}}\nonumber \\ &=-\underline {k}_{\eta 3}\left (\sum _{i=1}^{N}{||s_{\eta ,i}||_2^2}\right )^\frac {1}{2}-\underline {k}_{\eta 4}\left (\sum _{i=1}^{N}{||s_{\eta ,i}||_2^2}\right )^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}}\nonumber \\ &=-\kappa _{\eta 1}V_{\eta 1}^{\frac {1}{2}}-\kappa _{\eta 2}V_{\eta 1}^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}},\end {align}


$\kappa _{\eta 1}=\underline {k}_{\eta 3}\sqrt {2}$


$\kappa _{\eta 2} = \underline {k}_{\eta 4}\sqrt {2^{(q_6+q_6)/q_6}}$


$s_{\eta ,i}, i=1,2,\ldots ,N$


$\mathcal {T}_{\eta 2}$


$\mathcal {T}_{\eta 2}\leq \frac {2}{\kappa _{\eta 1}}+\frac {2q_6}{\kappa _{\eta 2}(q_5-q_6)}$


$s_{\eta ,i}=e_{\eta ,i} + k_{\eta {1.i}}e_{\eta ,i}^{\frac {q_1}{q_2}} + k_{\eta {2,i}}\dot {e}_{\eta , i}^{\frac {q_3}{q_4}}=0$


$\dot {e}_{\eta , i}^{\frac {q_3}{q_4}}=-\frac {1}{k_{\eta {2,i}}}\left (e_{\eta ,i} + k_{\eta {1.i}}e_{\eta ,i}^{\frac {q_1}{q_2}}\right )$


$V_{\eta 2}=\frac {1}{2}\sum _{i=1}^{N}{e_{\eta ,i}^\top e_{\eta ,i}}$


$V_{\eta 2}$


\begin {align}\dot {V}_{\eta 2} &=-\sum _{i=1}^{N}\bracketsM {\frac {1}{k_{\eta {2,i}}}\bracketsS {e_{\eta ,i}^\top }^{\frac {q_3}{q_4}}\bracketsS {e_{\eta , i}+k_{\eta {1.i}}e_\eta ^{\frac {p_1}{p_2}}}}^{\frac {q_4}{q_3}}\nonumber \\ &=-\sum _{i=1}^{N}\left [\frac {1}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\frac {k_{\eta {1.i}}}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}\right ]^{\frac {q_4}{q_3}}.\end {align}


\begin {align}\dot {V}_{\eta 2} &\leq -\left \{\sum _{i=1}^{N}\left [\frac {1}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\frac {k_{\eta {1.i}}}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}\right ]\right \}^{\frac {q_4}{q_3}}\nonumber \\ &\leq -\left [\frac {1}{\overline {k}_{\eta 2}}\bracketsS {\sum _{i=1}^{N}||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\frac {\underline {k}_{\eta 1}}{\overline {k}_{\eta 2}}\bracketsS {\sum _{i=1}^{N}||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}\right ]^{\frac {q_4}{q_3}}\nonumber \\ &=-\bracketsM {\kappa _{\eta 1}V_{\eta 2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\kappa _{\eta 2}V_{\eta 2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}}^{\frac {q_4}{q_3}},\end {align}


$\overline {k}_{\eta 2}=$


$\max (k_{\eta {1.i}}, k_{\eta {2,i}}, \ldots , k_{\eta \,{N,i}})$


$\kappa _{\eta 1}=$


$2^{(\frac {1}{2}+\frac {q_3}{2q_4})}/\overline {k}_{\eta 2}$


$\underline {k}_{\eta 1}=$


$\min {(k_{\eta {1.i}}, k_{\eta {2,i}}, \ldots , k_{\eta \,{N,i}})}$


$\kappa _{\eta 2}=$


$\underline {k}_{\eta 1}2^{(\frac {q_3}{2q_4}+\frac {q_1}{2q_2})}/\overline {k}_{\eta 2}$


$e_{\eta ,i}, i=1,2,\ldots ,N$


$\mathcal {T}_{\eta 3}$


\begin {align}\mathcal {T}_{\eta 3} \leq \frac {2q_3}{(q_3-q_4)\kappa _{\eta 1}^{q_4/q_3}}+\frac {2q_2q_3}{\bracketsS {q_1q_4-q_2q_3}\kappa _{\eta 2}^{q_4/q_3}}.\end {align}


$\mathcal {T}_{\eta } \leq \mathcal {T}_{\eta 1} + \mathcal {T}_{\eta 2} + \mathcal {T}_{\eta 3}$


$3$


$5$


$128$


$std_0=0.45$


$std_d=0.05$


$std_{dN}=250$


$std_{\min }=0.2$


$T_m=10{s}$


$\mathrm {d}t=0.01{s}$


$b_s=T_m/\mathrm {d}t*2=2000$


$N_m$


$\gamma $


$K_{ep}$


$b_s$


$a_{lr}$


$c_{lr}$


$c_{en}$


$\lambda $


$c_{\min }$


$c_{\max }$


$N_m = 1000 \cdot \frac {(std_0 - std_{\min })}{std_d} + 1000$


$6$


$9$


$15$


$\varphi _d$


$\theta _d$


$k_{\rho 1, i}$


$k_{\rho 2, i}$


$k_{\rho 3, i}$


$k_{\rho 4, i}$


$p_1$


$p_6$


$p_1 = 9$


$p_2 = 7$


$p_3 = 5$


$p_4 = 3$


$p_5 = 7$


$p_6 = 5$


$k_{\rho 1, i}$


$k_{\rho 2, i}$


$k_{\rho 4, i}$


$k_{\rho 3, i}$


\begin {align}\label {eq50} \chi _{\rho ,i}&=\left [e_{\rho ,i}^\top , \dot {e}_{\rho ,i}^\top \right ]^\top \in \mathbb {R}^6,\\ \Theta _{\rho ,i}&=\left [k_{\rho 1, i, x}, k_{\rho 1, i, y}, k_{\rho 1, i,z}, k_{\rho 2, i,x}, k_{\rho 2, i,y}, k_{\rho 2, i,z}, k_{\rho 3, i,x}, k_{\rho 3, i,y}, k_{\rho 3, i,z}\right ]^\top \in \mathbb {R}^9.\nonumber \end {align}


\begin {align}J_{\rho ,i}(t)=-\int _{t=0}^{\infty }{e^{-\gamma _\rho (s-t)}\bracketsS {\chi _{\rho ,i}^\top Q_{\rho ,i}\chi _{\rho ,i}+\tau ^\top R_{\rho ,i}\tau }}\mathrm {d}s,\end {align}


$Q_{\rho ,i}=\diag (Q_{e_{\rho ,i}}, Q_{\dot {e}_{\rho ,i}})$


$Q_{e_{\rho ,i}}=\textbf {I}_3$


$Q_{\dot {e}_{\rho ,i}}=0.01\textbf {I}_3$


$R_{\rho ,i}=0.01\textbf {I}_3$


$\gamma _\rho =0.99$


$\rho _d = A \sin (2\pi t / T)$


$A \in [0, \pi /3]$


$T \in [3~\mathrm {s}, 6~\mathrm {s}]$


$q_1 = 9$


$q_2=7$


$q_3=5$


$q_4=3$


$q_5=7$


$q_6=5$


$k_{\eta 3, i}$


\begin {align}\label {yyf1} \chi _{\eta , i}&=\left [e_{\eta , i}^\top , \dot {e}_{\eta , i}^\top \right ]^\top \in \mathbb {R}^6,\\ \Theta _{\eta , i}&=\left [k_{\eta 1, i,x}, k_{\eta 1, i,y}, k_{\eta 1, i,z}, k_{\eta 2, i,x}, k_{\eta 2, i,y}, k_{\eta 2, i,z}, k_{\eta 3,i, x}, k_{\eta 3, i,y}, k_{\eta 3, i,z}\right ]^\top \in \mathbb {R}^9.\nonumber \end {align}


\begin {align}J_{\eta , i}(t)=-\int _{t=0}^{\infty }{e^{-\gamma _\eta (s-t)}\bracketsS {\chi _{\eta , i}^\top Q_{\eta , i}\chi _{\eta , i}+u_{\eta , i}^\top R_{\eta , i}u_{\eta , i}}}\mathrm {d}t,\end {align}


$Q_{\eta , i}=\diag (Q_{e_{\eta , i}}, Q_{\dot {e}_{\eta , i}})$


$Q_{e_{\eta , i}}=\textbf {I}_3$


$Q_{\dot {e}_{\eta , i}}=0.1\textbf {I}_3$


$R_{\eta , i}=0.01\textbf {I}_3$


$\gamma _\eta =0.99$


$\eta _d=A\sin (2\pi t / T)$


$A\in [0{m}, 2.5{m}]$


$T\in [5{s}, 8{s}]$


$[0, \infty )$


$\varepsilon $


$(0, \infty )$


$(10^{-3}, 5\times 10^{-3})$


$(10^{-4}, 5\times 10^{-4})$


$0.2$


$0.5$


$T_m$


$\mathrm {d}t$


$N_0 = \frac {T_m}{\mathrm {d}t}$


$2N_0$


$4N_0$


$1$


$1$


$\mathcal {A}_{s1}$


$\mathcal {D}_{s1}$


$\mathcal {B}_{s1}$


$\mathcal {L}_{s1}$


\begin {align}&\mathcal {A}_{s1}= \begin {bmatrix} 0 & 1 & 1 & 1 & 1 & 1\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0 \end {bmatrix},~ \mathcal {D}_{s1}=\begin {bmatrix} 5 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end {bmatrix},~\notag \\ &\mathcal {B}_{s1}=\begin {bmatrix} 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end {bmatrix},\end {align}


$\mathcal {L}_{s1} = \mathcal {D}_{s1} - \mathcal {A}_{s1}$


$\mathcal {O}_d$


\begin {align}x_d=r_d\sin {(0.2\pi t)}+2,~y_d=r_d\cos {(0.2\pi t)}+3,~z_d=\sin {(0.4\pi t)}+2\end {align}


$r_d=5m$


$\mathcal {O}_d$


$\nu _i, i=1,2,\ldots ,6$


\begin {align}\nu _{i,x}=r_\nu \sin {(0.2\pi t+\phi _{x,i})},~\nu _{i,y}=r_\nu \sin {(0.2\pi t+\phi _{y,i})},~\nu _{i,z}=0,\end {align}


$\phi _{x,i} = \frac {\pi }{2} + (i-1)\frac {\pi }{3}$


$\phi _{y,i} = (i-1)\frac {\pi }{3}$


$r_\nu =2m$


$||e_{\eta , i}||_2$


$2$


$i=1,2,3,4$


$\Delta m_i=-0.2{kg}$


$0 < t \leq 10$


$\Delta m_i=0.2{kg}$


$10 < t \leq 20$


$\Delta m_i=0{kg}$


$30 < t \leq 40$


$1$


$1$


$4$


$2$


$2$


$\mathcal {A}_{s2}$


$\mathcal {D}_{s2}$


$\mathcal {B}_{s2}$


$\mathcal {L}_{s2}$


\begin {align}&\mathcal {A}_{s2}= \begin {bmatrix} 0 & 1 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 \end {bmatrix},~ \mathcal {D}_{s2}=\begin {bmatrix} 2 & 0 & 0 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0 & 0\\ 0 & 0 & 0 & 3 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end {bmatrix},\notag \\ &\mathcal {B}_{s2}=\begin {bmatrix} 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end {bmatrix},\end {align}


$\mathcal {L}_{s2} = \mathcal {D}_{s2} - \mathcal {A}_{s2}$


$\mathcal {O}_d$


\begin {align}x_d=r_d\cos {(0.2\pi t)}+2,~y_d=r_d\sin {(0.4\pi t)}+3,~z_d=\sin {(0.4\pi t)}+2\end {align}


$r_d=5m$


$\mathcal {O}_d$


$\nu _i, i=1,2,\ldots ,6$


$\theta _0=60^{\circ }$


$r_\nu =2m$


$||e_\eta ||_2$


$2$


$\infty $


$L_1$


$L_2$


$0.722\ kg$


$250~\mathrm {mm}$


$3\ {m/s}$


$2g\approx 19.6~\mathrm {m/s^2}$


$200\ {Hz}$


$1$


$\mathcal {A}_{p1}$


$\mathcal {D}_{p1}$


$\mathcal {B}_{p1}$


$\mathcal {L}_{p1}$


\begin {align}\mathcal {A}_{p1}=\begin {bmatrix} 0&1&1&1\\ 1&0&0&0\\ 1&0&0&0\\ 1&0&0&0 \end {bmatrix},~ \mathcal {D}_{p1}=\begin {bmatrix} 3&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1 \end {bmatrix},~ \mathcal {B}_{p1}=\begin {bmatrix} 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end {bmatrix},\end {align}


$\mathcal {L}_{p1}=\mathcal {D}_{p1}-\mathcal {B}_{p1}$


$\mathcal {O}_d=\bracketsM {0, 0.2, 1.5}^\top $


$\mathcal {O}_d$


$\nu _i, i=1,2,3,4$


$||e_\eta ||_2$


$2$


$k_{\eta 1}$


$k_{\eta 2}$


$k_{\eta 4}$


$1$


$x$


$y$


$z$


$0$


$2$


$e_\eta $


$\dot {e}_\eta $


$1$


$x$


$y$


$z$


$k_{\eta 1}$


$k_{\eta 2}$


$k_{\eta 4}$


$5{ms}$


$2$


$\mathcal {A}_{p2}$


$\mathcal {D}_{p2}$


$\mathcal {B}_{p2}$


$\mathcal {L}_{p2}$


\begin {align}\mathcal {A}_{p2}=\begin {bmatrix} 0&1&0&1\\ 1&0&1&0\\ 0&1&0&0\\ 1&0&0&0 \end {bmatrix},~ \mathcal {D}_{p2}=\begin {bmatrix} 2&0&0&0\\ 0&2&0&0\\ 0&0&1&0\\ 0&0&0&1 \end {bmatrix},~ \mathcal {D}_{p2}=\begin {bmatrix} 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end {bmatrix},\end {align}


$\mathcal {L}_{p2}=\mathcal {D}_{p2}-\mathcal {B}_{p2}$


$\mathcal {O}_d$


\begin {align}x_d = \cos {(0.4\pi t)}, ~y_d = \sin {(0.8\pi t)} + 0.2, ~z_d = 1.5.\end {align}


$\mathcal {O}_d$


$\nu _i, i=1,2,3,4$


$2$


$||e_\eta ,i||_2$


$k_{\eta 1}$


$k_{\eta 2}$


$k_{\eta 4}$


$2$


$x$


$y$


$z$


$2$


$1$


$L_2$


$L_1$


$2$


$y$


$x$
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tionality by integrating a robotic manipulator with an adaptive pre-
scribed performance controller, and Ijaz et al. [21] proposed an
integral SMC scheme with fault estimation for quadrotor systems. 
Although these methods have advanced the autonomous control of 
quadrotor formations, they still exhibit limitations in time-critical mis-
sions. Specifically, many approaches suffer from slow response, weak ro-
bustness, and strong dependence on accurate models in strongly coupled 
nonlinear systems. Moreover, conventional finite-time control strategies 
may not guarantee sufficiently fast convergence when quadrotor trajec-
tories are explicitly time-parameterized, as is typical in practical plan-
ning modules.

To address the consensus control problem, various fixed-time con-
trol algorithms have been proposed. Zhao et al. [22] developed a fixed-
time event-triggered SMC for multi-agent systems with unknown dy-
namics. Miao et al. [23] designed a fixed-time fault-tolerant controller 
for multi-quadrotor systems, while Su et al. [24] proposed a fixed-time 
formation-containment scheme. However, these methods typically as-
sume that both the disturbances and their derivatives are bounded, an 
assumption that is often unrealistic in practice. In real-world operations, 
disturbances such as wind gusts or sudden changes in quadrotor mass 
may vary abruptly, making it essential to design controllers that guaran-
tee fixed-time convergence while remaining robust against such uncer-
tainties. Fixed-time sliding mode control with disturbance observers can 
ensure convergence, but selecting appropriate control gains remains a 
critical challenge. Insufficient gains may lead to slow convergence and 
poor disturbance rejection, whereas overly large gains can cause aggres-
sive responses, instability, or even divergence. Consequently, it is highly 
desirable to develop adaptive, time-varying gain mechanisms that can 
balance convergence speed and robustness under diverse operating con-
ditions.

Numerous adaptive sliding mode methods have been proposed to 
address the problem of gain tuning. For instance, Rodriguez et al. [25] 
developed an adaptive mechanism based on chattering detection. How-
ever, this approach adjusts the control gain only after chattering occurs, 
which is inadequate for quadrotor applications requiring strict real-time 
performance. Smith et al. introduced an adaptive tuning law where the 
adaptation rate was proportional to the error magnitude, but the op-
timality of such proportional adaptation remains unverified. Beyond 
classical adaptive methods, artificial intelligence (AI)-based approaches 
have been increasingly explored to enhance control performance. Deep 
reinforcement learning (DRL) is particularly attractive due to its inde-
pendence from precise system models, adaptability, and powerful non-
linear approximation capability. Yan et al. [26] integrated DRL with 
SMC for multi-agent systems with time delays, while Wang et al. [27] 
investigated a data-driven framework combining SMC, DRL, and event-
triggered control for unknown nonlinear systems. Similarly, Wang et 
al. [28] proposed a DRL-based SMC scheme for decentralized event-
triggered control. Although DRL enhances adaptivity, it also introduces 
theoretical challenges that may undermine stability. Alternative learn-
ing paradigms such as Adaptive Dynamic Programming (ADP) have also 
been applied [29,30], but these often degrade fixed-time stability to 
uniformly ultimately bounded (UUB) stability, which is insufficient for 
time-critical applications. Therefore, it is crucial to develop a system-
atic adaptive gain tuning strategy that not only leverages learning-based 
adaptability but also guarantees rigorous theoretical stability, thereby 
bridging the gap between advanced control theory and practical quadro-
tor applications.

To address the challenges discussed above, this paper proposes a 
DRL-based fast nonsingular terminal sliding mode control (FNTSMC) 
framework. Specifically, a FNTSMC approach integrated with a fixed-
time disturbance observer (FTDO) is developed to achieve fixed-time 
robust control for multi-quadrotor systems, with the FTDO serving 
as a model compensation strategy for formation control. Building on 
this, a hybrid scheme combining DRL with fixed-time SMC is intro-
duced, which guarantees fixed-time convergence while enabling adap-
tive tuning and optimization of control parameters. Compared with 

prior studies, the main contributions of this work are summarized as
follows:

1) A fully distributed FNTSMC is developed to address the consensus 
control problem in multi-quadrotor systems, with rigorous fixed-
time stability guaranteed in the Lyapunov sense. Unlike the meth-
ods in [18–21], which only ensure finite-time stability, the proposed 
FNTSMC achieves fixed-time formation maintenance, offering faster 
and more predictable convergence.

2) A fixed-time disturbance observer (FTDO) is developed to estimate 
unknown external disturbances, with the estimation error guaran-
teed to converge to a small neighborhood of the origin within a fixed 
time. In contrast to the observers in [22–24], the proposed FTDO re-
moves the restrictive assumption that disturbances must vary slowly 
with near-zero time derivatives, enabling more robust performance 
under abrupt disturbances.

3) Unlike the methods in [27–30], the proposed framework employs 
DRL to optimize FNTSMCs rather than directly replacing the con-
troller with a neural network. This hybrid approach preserves fixed-
time stability while significantly enhancing the robustness and flight 
performance of the quadrotor formation. The effectiveness and su-
periority of the proposed control framework are further validated 
through extensive simulations and real-world experiments.

The remainder of the paper is organized as follows: Section 2 in-
troduces some preliminaries and outlines the problem addressed in this 
study. The controller design is presented in Section 3. In Section 4, a re-
inforcement learning-based parameter optimization framework is intro-
duced to further improve the hyperparameters of the FNTSMCs. Simu-
lations and experiments are conducted in Sections 5 and 6, respectively. 
Finally, Section 7 concludes the paper.

Notations: Given the extensive use of abbreviations and mathemat-
ical notations in this paper, we provide a comprehensive list of their 
definitions in Appendix  A to enhance the clarity and reproducibility of 
our findings.

2.  Preliminaries and problem formulation

2.1.  Fundamental mathematics

The quadrotor group, consisting of 𝑁 quadrotors, can be modeled 
as a graph  = ( , ), where  = {𝑣1, 𝑣2,… , 𝑣𝑁} represents the set of 
nodes, with 𝑣𝑖 denoting the 𝑖th quadrotor, and  = {(𝑣𝑖, 𝑣𝑗 )} denotes the 
set of edges, with (𝑣𝑖, 𝑣𝑗 ) indicating that information can be transmitted 
from 𝑣𝑖 to 𝑣𝑗 . The neighbor set of 𝑣𝑖 is defined as 𝑖 = {𝑣𝑗 ∣ (𝑣𝑗 , 𝑣𝑖) ∈ }. 
The adjacency matrix is denoted by  = [𝑎𝑖𝑗 ] ∈ ℝ𝑁×𝑁 , where 𝑎𝑖𝑗 = 1 if 
(𝑣𝑗 , 𝑣𝑖) ∈  and 𝑎𝑖𝑗 = 0 otherwise. The graph is undirected if 𝑎𝑖𝑗 = 𝑎𝑗𝑖
for all 𝑖, 𝑗, and directed if there exists at least one pair (𝑖, 𝑗) such 
that 𝑎𝑖𝑗 ≠ 𝑎𝑗𝑖. The in-degree matrix is defined as  = diag(𝑑1, 𝑑2,… , 𝑑𝑁 )
with 𝑑𝑖 =

∑𝑁
𝑗=1 𝑎𝑗𝑖, and the Laplacian matrix is given by  =  −. 

For leader-follower control, the leader adjacency matrix is defined as 
 = diag(𝑏1, 𝑏2,… , 𝑏𝑁 ), where 𝑏𝑖 = 1 if 𝑣𝑖 receives information from the 
leader and 𝑏𝑖 = 0 otherwise. The augmented graph including the leader 
node 𝑣𝑏 is denoted by  = ( ,  , 𝑣𝑏, {𝑏𝑖}). Without loss of generality, the 
following assumptions are made. Moreover, for clarity and convenience, 
several useful lemmas and definitions are provided below.

Assumption 1. [31] For the graph theory used in the study, the follow-
ing standard conditions are required: (1) The graph  is undirected. (2) 
There are no self-loops in the graph . Namely, 𝑎𝑖𝑖 = 0, 𝑖 = 1, 2,… , 𝑁 . 
(3) There exists at least one spanning tree with the leader node 𝑣𝑏 as the 
root of graph .

Assumption 2. [32] The disturbances 𝛿𝜌,𝑖, 𝛿𝜂,𝑖 acted on the 𝑁 quadro-
tors are bounded by unknown positive constants, namely, ||𝛿𝜌,𝑖|| ≤ 𝛿 and 
||𝛿𝜂,𝑖|| ≤ 𝛿, where 𝛿 is the unknown upper bound of the disturbances.
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Assumption 3. [33] The yaw angle is bounded as 𝜓𝑖 ∈ [−𝜋, 𝜋]. To avoid 
singularities, the pitch and roll angles are bounded as 𝜙𝑖, 𝜃𝑖 ∈

(

− 𝜋
2 ,

𝜋
2

)

.

Lemma 1. [34] For an undirected graph, the matrix  =  +  is sym-
metrical and positive definite if the graph  is connected and at least one 
follower can receive the leader’s information.
Lemma 2. [35] For system 𝑥̇ = 𝑓 (𝑥) ∈ ℝ𝑛. If there exists a continuous 
radially unbounded function 𝑉 ∶ ℝ𝑛 → ℝ+{0} for the system such that 𝑉̇ ≤
−
[

𝑎1𝑉 (𝑥)𝑚1 + 𝑎2𝑉 (𝑥)𝑚2
]𝑘 for some 𝑎1 > 0, 𝑎2 > 0, 𝑚1 > 0, 𝑚2 > 0, 𝑘 > 0, 

𝑘𝑚1 < 1, and 𝑘𝑚2 > 1. Then the system is said to be fixed-time stable and 
the settling time 𝑇 ≤ 𝑇𝑚 = 1

𝑎𝑘1 (1−𝑘𝑚1)
+ 1

𝑎𝑘2 (𝑘𝑚2−1)
.

Lemma 3. [36] ∀𝑥𝑖 ∈ ℝ, 𝑖 = 1, 2,… , 𝑛, 0 < 𝑝 ≤ 1, there is (∑𝑛
𝑖=1

|

|

𝑥𝑖||
)𝑝 ≤

∑𝑛
𝑖=1

|

|

𝑥𝑖||
𝑝 ≤ 𝑛1−𝑝

(
∑𝑛
𝑖=1

|

|

𝑥𝑖||
)𝑝.

Definition 1. [37] For system 𝑥̇ = 𝑓 (𝑥), 𝑓 (0) = 0, where 𝑓 ∶  → ℝ𝑛 is 
continuous on an open neighborhood  ⊆ ℝ𝑛 of the origin and 𝑓 (0) = 0. 
The origin is said to be a finite-time-stable equilibrium of the system if 
there exists an open neighborhood  ⊆  of the origin and a function 
𝑇 ∶ ∖{0} → (0,∞), called the settling-time function, such that the fol-
lowing statements hold:
(1) Finite-time convergence: For every 𝑥 ∈ ∖{0}, 𝜓𝑥 is defined on 
[0, 𝑇 (𝑥)), 𝜓𝑥(𝑡) ∈ ∖{0} for all 𝑡 ∈ [0, 𝑇 (𝑥)), and lim𝑡→𝑇 (𝑥) 𝜓𝑥(𝑡) = 0.
(2) Lyapunov stability: For every open neighborhood 𝜀 of 0 there exists 
an open subset 𝛿 of   containing 0 such that, for every 𝑥 ∈ 𝛿∖{0}, 
𝜓𝑥(𝑡) ∈ 𝜀,∀𝑡 ∈ [0, 𝑇 (𝑥)).
The origin is said to be a globally finite-time-stable equilibrium if it is a 
finite-time stable equilibrium with  =  = ℝ𝑛.

Definition 2. [35] For system 𝑥̇ = 𝑓 (𝑥), 𝑓 (0) = 0, 𝑥0 = 𝑥(0), where 𝑓 ∶
 → ℝ𝑛 is continuous on an open neighborhood  ⊆ ℝ𝑛 of the origin and 
𝑓 (0) = 0. The system is said to be fixed-time stable if it is globally finite-
time stable and the function 𝑇 (𝑥) is bounded, i.e., ∃𝑇max > 0 ∶ 𝑇 (𝑥0) ≤
𝑇max,∀𝑥0 ∈ ℝ𝑛.

2.2.  System description

The dynamics of the 𝑖th quadrotor can be described as

𝜂̈𝑖 =
𝑢𝑓,𝑖

𝑚𝑖 + Δ𝑚𝑖
𝐴𝑖(𝜌𝑖) − g −

𝑘𝑡
𝑚𝑖 + Δ𝑚𝑖

𝜂̇𝑖 +
𝛿𝜂,𝑖

𝑚𝑖 + Δ𝑚𝑖
,

𝜔̇𝑖 = 𝐽−1
𝑖 [−𝑘𝑟𝜔𝑖 − 𝜔𝑖 × (𝐽𝑖𝜔𝑖) + 𝛿𝜌,𝑖 + 𝜏𝑖],

𝜌̇𝑖 = 𝑊𝑖(𝜌𝑖)𝜔𝑖, (1)

where 𝜂𝑖, 𝑢𝑓,𝑖, 𝑘𝑡, and 𝑚𝑖 respectively represent the position, throttle, 
drag coefficient of the translational loop, and mass of the 𝑖-th quadro-
tor, Δ𝑚𝑖 is the mass uncertainty, g = [0, 0, 𝑔]⊤ is the gravitational ac-
celeration; 𝜔𝑖, 𝐽 , 𝑘𝑟, and 𝜏𝑖 respectively denote the angular rate, in-
ertia tensor matrix, drag coefficient of the rotational loop, and torque 
of the 𝑖-th quadrotor; 𝐴𝑖 ≜ 𝐴𝑖(𝜌𝑖) = [𝐶𝜑,𝑖𝐶𝜓,𝑖𝑆𝜃,𝑖 + 𝑆𝜑,𝑖𝑆𝜓,𝑖, 𝐶𝜑,𝑖𝑆𝜓,𝑖𝑆𝜃,𝑖 −

𝑆𝜑,𝑖𝐶𝜓,𝑖, 𝐶𝜃,𝑖𝐶𝜑,𝑖]⊤ and 𝑊𝑖 ≜ 𝑊𝑖(𝜌𝑖) =
⎡

⎢

⎢

⎣

1 𝑆𝜑,𝑖𝑇𝜃,𝑖 𝐶𝜑,𝑖𝑇𝜃,𝑖
0 𝐶𝜑,𝑖 −𝑆𝜑,𝑖
0 𝑆𝜑,𝑖∕𝐶𝜃,𝑖 𝐶𝜑,𝑖∕𝐶𝜃,𝑖

⎤

⎥

⎥

⎦

. 𝛿𝜂,𝑖

and 𝛿𝜌,𝑖 respectively denote the disturbances acting on the translational 
and rotational subsystems of the 𝑖th quadrotor. 𝐶(⋅), 𝑆(⋅), and 𝑇(⋅) denote 
the cosine, sine, and tangent functions, respectively.

2.2.1.  Rotational subsystem
The tracking error 𝑒𝜌,𝑖 and the 1st and 2nd order derivatives of 𝑒𝜌,𝑖

are given by 
𝑒𝜌,𝑖 = 𝜌𝑖 − 𝜌𝑑,𝑖, 𝑒̇𝜌,𝑖 = 𝑊𝑖𝜔𝑖 − 𝜌̇𝑑,𝑖, 𝑒𝜌,𝑖 = 𝑊̇𝑖𝜔𝑖 +𝑊𝑖𝜔̇𝑖 − 𝜌̈𝑑,𝑖, (2)

where 𝜌𝑑,𝑖 =
[

𝜙𝑑,𝑖, 𝜃𝑑,𝑖, 𝜓𝑑,𝑖
]⊤ is the reference attitude angle, and 𝑊̇𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝜑̇𝑖𝑇𝜃𝑖𝐶𝜑𝑖 +
𝜃̇𝑖𝑆𝜑𝑖
𝐶2
𝜃𝑖

−𝜑̇𝑖𝑆𝜑𝑖𝑇𝜃𝑖 +
𝜃̇𝑖𝐶𝜑𝑖
𝐶2
𝜃𝑖

0 −𝜑̇𝑖𝑆𝜑𝑖 −𝜑̇𝑖𝐶𝜑𝑖
0

𝜑̇𝑖𝐶𝜑𝑖𝐶𝜃𝑖+𝜃̇𝑖𝑆𝜑𝑖𝑆𝜃𝑖
𝐶2
𝜃𝑖

−𝜑̇𝑖𝑆𝜑𝑖𝐶𝜃𝑖+𝜃̇𝑖𝐶𝜑𝑖𝑆𝜃𝑖
𝐶2
𝜃𝑖

⎤

⎥

⎥

⎥

⎥

⎦

. By defining Δ𝜌,𝑖 = 𝐽−1
𝑖 𝛿𝜌,𝑖

−𝜌̈𝑑,𝑖, 𝑓𝜌,𝑖 =−𝐽−1
𝑖 [𝑘𝑟𝜔𝑖 + 𝜔𝑖 × (𝐽𝑖𝜔𝑖)], 𝐴𝜌,𝑖 = 𝑊̇𝑖𝜔𝑖 +𝑊𝑖𝑓𝜌,𝑖, 𝐵𝜌,𝑖 = 𝑊𝑖𝐽−1

𝑖
and doing some manipulations, Eq. 2 can be finally simplified as 
𝑒𝜌,𝑖 = 𝐴𝜌,𝑖 + 𝐵𝜌,𝑖𝜏𝑖 + Δ𝜌,𝑖. (3)

Remark 1.  Note that the second-order derivative of 𝜌𝑑,𝑖 is known for 
pure attitude control. However, in the case of position control, the de-
sired attitude commands are generated by the translational subsystem. 
As a result, 𝜌̈𝑑,𝑖 is absorbed into Δ𝜌,𝑖 and treated as part of the unknown 
disturbances.

2.2.2.  Translational subsystem
The virtual expected acceleration of the 𝑖th quadrotor can be defined 

as 
𝑢𝜂,𝑖 =

[

𝑎𝑥,𝑖, 𝑎𝑦,𝑖, 𝑎𝑧,𝑖
]⊤, (4)

yielding 

𝜂̈𝑖 = −
𝑘𝑡
𝑚𝑖
𝜂̇𝑖 + 𝑢𝜂,𝑖 + Δ𝜂,𝑖, (5)

where Δ𝜂,𝑖 =
𝑢𝑓,𝑖

𝑚𝑖+Δ𝑚𝑖
𝐴𝑖(𝜌𝑖) − g −

𝑘𝑡
𝑚𝑖+Δ𝑚𝑖

𝜂̇𝑖 +
𝑘𝑡
𝑚𝑖
𝜂̇𝑖 +

𝛿𝜂,𝑖
𝑚𝑖+Δ𝑚𝑖

− 𝑢𝜂,𝑖 is the 
equivalent disturbance. Thereafter, it can be easily derived that

𝑢𝑓,𝑖 = 𝑚𝑖
√

𝑎2𝑥,𝑖 + 𝑎
2
𝑦,𝑖 + (𝑎𝑧,𝑖 + 𝑔)2, 𝜑𝑑,𝑖 = arcsin

𝑚𝑖
[

𝑎𝑥,𝑖𝑆𝜓,𝑖 − 𝑎𝑦,𝑖𝐶𝜓,𝑖
]

𝑢𝑓,𝑖
,

𝜃𝑑,𝑖 = arctan
𝑎𝑥,𝑖𝐶𝜓,𝑖 + 𝑎𝑦,𝑖𝑆𝜓,𝑖

𝑎𝑧,𝑖 + 𝑔
. (6)

The consensus tracking error of the 𝑖th quadrotor can be defined as 

𝑒𝜂,𝑖 =
𝑁
∑

𝑗=1
𝑎𝑖𝑗

[

(𝜂𝑖 − 𝜈𝑖) − (𝜂𝑗 − 𝜈𝑗 )
]

+ 𝑏𝑖(𝜂𝑖 − 𝜂𝑑 − 𝜈𝑖), (7)

where 𝜂𝑑 is the reference trajectory of the geometric centre of the 
quadrotor formation and 𝜈𝑖 is the offset of the 𝑖th quadrotor to the geo-
metric centre. Correspondingly, there is 

𝑒̇𝜂,𝑖 =
𝑁
∑

𝑗=1
𝑎𝑖𝑗

[

(𝜂̇𝑖 − 𝜈̇𝑖) − ( ̇𝑒𝑡𝑎𝑗 − ̇𝑛𝑢𝑗 )
]

+ 𝑏𝑖(𝜂̇𝑖 − 𝜂̇𝑑 − 𝜈̇𝑖), (8)

For ease of theoretical derivation, a new variable can be defined as 
Λ𝑖 = 𝑏𝑖𝜂𝑑 + (𝑏𝑖 + 𝑑𝑖)𝜈𝑖 +

∑𝑁
𝑗=1

𝑎𝑖𝑗 (𝜂𝑗 − 𝜈𝑗 ). (9)

Correspondingly, one obtains
Λ̇𝑖 =𝑏𝑖𝜂̇𝑑 + (𝑏𝑖 + 𝑑𝑖)𝜈̇𝑖 +

∑𝑁
𝑗=1

𝑎𝑖𝑗 (𝜂̇𝑗 − 𝜈̇𝑗 ), Λ̈𝑖 = 𝑏𝑖𝜂̈𝑑 + (𝑏𝑖 + 𝑑𝑖)𝜈̈𝑖

+
∑𝑁

𝑗=1
𝑎𝑖𝑗 (𝜂̈𝑗 − 𝜈̈𝑗 ). (10)

Further, substituting 𝜂̈𝑗 into Λ̈𝑖 and doing some manipulations yield

Λ̈𝑖 = 𝑏𝑖𝜂̈𝑑 + (𝑏𝑖 + 𝑑𝑖)𝜈̈𝑖 +
∑𝑁

𝑗=1
𝑎𝑖𝑗

(

𝜂̈𝑗 − 𝜈̈𝑗
)

= 𝑏𝑖𝜂̈𝑑 + (𝑏𝑖 + 𝑑𝑖)𝜈̈𝑖 +
∑𝑁

𝑗=1
𝑎𝑖𝑗

(

−
𝑘𝑡,𝑗
𝑚𝑗

𝜂̇𝑗 + 𝑢𝜂,𝑗 + Δ𝜂,𝑗 − 𝜈̈𝑗

)

= Λ𝑖0 +
∑𝑁

𝑗=1
𝑎𝑖𝑗Δ𝜂,𝑗 , (11)

where

Λ𝑖0 = 𝑏𝑖𝜂̈𝑑 + (𝑏𝑖 + 𝑑𝑖)𝜈̈𝑖 +
∑𝑁

𝑗=1
𝑎𝑖𝑗 (−

𝑘𝑡,𝑗
𝑚𝑗

𝜂̇𝑗 + 𝑢𝜂,𝑗 − 𝜈̈𝑗 )

is a known variable. The 𝜂̈𝑑 and 𝜈̈𝑖 in ‘𝜆𝑖0’ are manually defined and 
the 𝑢𝜂,𝑗 and 𝜈̈𝑗 have to be accessed from other quadrotors. However, 
these two items are controlled by the 𝑎𝑖𝑗 . Specifically, as defined and 
described in the Laplacian matrix, 𝑎𝑖𝑗 = 0 means these messages cannot 
be transmitted from the 𝑗th quadrotor to the 𝑖th quadrotor; otherwise, 
𝑎𝑖𝑗 = 1. Then, the error dynamics of the translational loop can be given 
by 

𝑒𝜂,𝑖 = −
(𝑑𝑖 + 𝑏𝑖)𝑘𝑡,𝑖

𝑚𝑖
𝜂̇𝑖 + (𝑏𝑖 + 𝑑𝑖)𝑢𝜂,𝑖 − Λ𝑖0 + (𝑏𝑖 + 𝑑𝑖)Δ𝜂,𝑖 −

∑𝑁
𝑗=1

𝑎𝑖𝑗Δ𝜂,𝑗 .

(12)

Aerospace Science and Technology 168 (2026) 111133 

3 



Y. Yang, K. Liu, L.-Y. Lo et al.

Table 1 
Some variables used in controller design.
 Variable  Definition  Variable  Definition
𝑚𝜌1∼𝜌3 a  constants in rotational observer design 𝑧𝜌1  estimation of 𝑒𝜌
𝑧𝜌2  estimation of 𝑒̇𝜌 𝛽1∼3 a  positive constants
𝑧𝜌3  estimation of Δ𝜌 𝛼1∼3 a  positive constants
𝑝1∼6 a  constants in rotatinoal controllers 𝑘𝜌1∼𝜌4 a  rotational loop control gains
𝑧𝜂1  estimation of 𝑒𝜂 𝑚𝜂1∼𝜂3  constants in translational observer design
𝑧𝜂2  estimation of 𝑒̇𝜂 𝑛𝜂1∼𝜂3  constants in translational observer design
𝑧𝜂3  estimation of Δ𝜂 𝑘𝜂1∼𝜂4  translational loop control gains
𝑞1∼6  constants in translational controllers
a Subscript ‘i’ in this section represents the index of the quadrotor.

2.3.  Problem formulation

Based on the Assumption. 1–3, the control objective of this paper is 
formulated as follows:

Control Objective: Given a quadrotor group of 𝑁 quadrotors subject 
to airflow disturbances generated by fans and additional suspended pay-
loads with uncertain mass, we assume the topological graph  satisfies 
the conditions in Assumption. 1. For a set of reference trajectories gen-
erated by the virtual leader node with 𝜂𝑑 = [𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 ]⊤ being the refer-
ence position, 𝜓𝑑 being the reference yaw angle, and 𝜈𝑖 = [𝜈𝑥,𝑖, 𝜈𝑦,𝑖, 𝜈𝑧,𝑖]⊤

denoting the offset of the 𝑖th quadrotor from 𝜂𝑑 , we design an adaptive 
controller such that for 𝑖 = 1, 2,… , 𝑁

lim
𝑡→𝑇𝜂

[

𝜂𝑖(𝑡) −
(

𝜂𝑑 + 𝜈𝑖
)]

= 0, lim
𝑡→𝑇𝜌

[

𝜓𝑖(𝑡) − 𝜓𝑑
]

= 0, (13)

with 𝑇𝜂 and 𝑇𝜌 being the settling time of the translational and rotational 
subsystems, respectively.
Remark 2.  Note that 𝜂𝑑 and 𝜈𝑖 can be either constants or time-varying 
variables, which implies that the UAV formation may either maintain a 
fixed configuration or undergo a change in formation. The uncertainties 
considered in the experiments of this work are classified into two types: 
(i) the mass uncertainty of the UAVs, and (ii) the wind disturbances 
generated by the fan. The control framework designed in this work the-
oretically guarantees that the consensus tracking error converges to zero 
within a fixed time.

3.  Controller design

This section provides a consensus controller design for the quadrotor 
formation. Before starting this section, we first provide Table 1 of some 
important mathematical symbols and their definitions in this section for 
easy reference.

3.1.  Rotational subsystem stability

For simplicity, the subscript ‘𝑖’ in the rotational loop controller de-
sign is omitted since the quadrotors are all homogeneous and the design 
of the FTDO and FNTSMC in the rotational loop does not require the in-
formation from other quadrotors [38].

To begin with, an FTDO can be designed as
𝑧̇𝜌1 = ℵ𝜌𝑚𝜌1

⌊

𝑒𝜌
⌉𝛼1 + (1 − ℵ𝜌)𝑚𝜌1

⌊

𝑒𝜌
⌉𝛽1 + 𝑧𝜌2,

𝑧̇𝜌2 = ℵ𝜌𝑚𝜌2
⌊

𝑒𝜌
⌉𝛼2 + (1 − ℵ𝜌)𝑚𝜌2

⌊

𝑒𝜌
⌉𝛽2 + 𝑧𝜌3 + 𝐴𝜌 + 𝐵𝜌𝜏,

𝑧̇𝜌3 = ℵ𝜌𝑚𝜌3
⌊

𝑒𝜌
⌉𝛼3 + (1 − ℵ𝜌)𝑚𝜌3

⌊

𝑒𝜌
⌉𝛽3 , (14)

where 𝑧𝜌1, 𝑧𝜌2, and 𝑧𝜌3 are the estimations of 𝑒𝜌, 𝑒̇𝜌, and Δ𝜌, respectively, 
𝑒𝜌,𝑖 = 𝑒𝜌 − 𝑧𝜌1 is the estimation error of 𝑒𝜌. ℵ𝜌 is a switching parameter; 
𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽1, and 𝛽3 are positive constants. Specifically, 𝛼1 = 3

4 , 𝛼2 =
2
4 , 𝛼3 =

1
4 , 𝛽1 =

5
4 , 𝛽2 =

6
4 , 𝛽3 =

7
4 , and ℵ𝜌 = 0 if ||𝑒𝜌||2 > 𝑒∗𝜌 else 1 with 𝑒∗𝜌

being the threshold of the estimation error. Apart from that, parameters 

𝑚𝜌1, 𝑚𝜌2, and 𝑚𝜌3 are designed such that matrix Γ𝑚,𝜌 =
⎡

⎢

⎢

⎣

−𝑚𝜌1 1 0
−𝑚𝜌2 0 1
−𝑚𝜌3 0 0

⎤

⎥

⎥

⎦

is Hurwitz.

With observer (14) and Lemma. 2, Δ𝜌 can be estimated in a fixed-
time 𝜌1, and the estimation error converges to a neighborhood of the 
origin Ω𝜌. Due to space limitations, the detailed stability analysis is omit-
ted here. Interested readers are referred to Theorem 1 in [39] and The-
orem 1 in [40] for a comprehensive proof.
Remark 3.  Observer (14) is a second-order FTDO. 𝑧𝜌1, 𝑧𝜌2, and 𝑧𝜌3 are 
utilized to estimate the 𝑒𝜌, 𝑒̇𝜌, and Δ𝜌, respectively. The key principle of 
this observer lies in estimating the Δ𝜌 by using the 𝑒𝜌, the observation 
error of 𝑒𝜌1. Theoretically, as ||𝑒𝜌||2 decreases, 𝑧𝜌1, 𝑧𝜌2, and 𝑧𝜌3 would 
gradually converge to the real values of 𝑒𝜌, 𝑒̇𝜌, and Δ𝜌, respectively. The 
higher the order of the observer, the longer it takes for the observation 
error to propagate to the highest derivative. To satisfy the requirements 
on 𝛼1∼3 and 𝛽1∼3 in observer [39], for a 𝑃 -order observer, the values of 𝛼1
to 𝛼𝑃  need to be designed as 𝑃

𝑃+1 ,
𝑃−1
𝑃+1 ,… , 1

𝑃+1  accordingly. Similarly, 𝛽1
to 𝛽𝑃  should be set as 𝑃+2𝑃+1 ,

𝑃+3
𝑃+1 ,… , 2𝑃+1𝑃+1 . In this study, 𝑃 = 3. Therefore, 

𝛼1 =
3
4 , 𝛼2 =

2
4 , 𝛼3 =

1
4 , 𝛽1 =

5
4 , 𝛽2 =

6
4 , 𝛽3 =

7
4 . As for the selection of ℵ𝜌, 

it is a threshold for switching the observer. Empirically, the value of ℵ𝜌
can be designed to be slightly less than 0.5 in practical applications. This 
choice ensures system stability while enhancing the observer’s sensitiv-
ity to large errors, thereby enabling faster convergence.
Remark 4. Although the stability of the observer can be ensured by 
guaranteeing the stability of the matrix Γ𝑚,𝜌, in practical applications it 
is often challenging to determine whether a third-order matrix is Hur-
witz simply by inspecting its parameters. Therefore, we utilize a method 
that integrates linear system theory to explicitly compute 𝑚𝜌1, 𝑚𝜌2, and 
𝑚𝜌3. Solving |𝜆𝐼3 − Γ𝑚,𝜌| = 0 yields 
𝜆3 + 𝑚𝜌1𝜆2 − 𝑚𝜌2𝜆 + 𝑚𝜌3 = 0. (15)

Simultaneously, assuming three negative real roots of a third-order lin-
ear equation are −𝜔1, −𝜔2, and −𝜔3 with 𝜔1, 𝜔2, 𝜔3 > 0. Then, we have
𝜆3 + 𝑚𝜌1𝜆2 − 𝑚𝜌2𝜆 + 𝑚𝜌3

=(𝜆 + 𝜔1)(𝜆 + 𝜔2)(𝜆 + 𝜔3)

=𝜆3 + (𝜔1 + 𝜔2 + 𝜔3)𝜆2 + (𝜔1𝜔2 + 𝜔2𝜔3 + 𝜔1𝜔3)𝜆 + 𝜔1𝜔2𝜔3 = 0 (16)

which yields 
𝑚𝜌1 = 𝜔1 + 𝜔2 + 𝜔3, 𝑚𝜌2 = 𝜔1𝜔2 + 𝜔2𝜔3 + 𝜔1𝜔3, 𝑚𝜌3 = 𝜔1𝜔2𝜔3. (17)

Therefore, we can compute 𝑚𝜌1, 𝑚𝜌2, and 𝑚𝜌3 by selecting appropriate 
𝜔1, 𝜔2, and 𝜔3.

Larger values of 𝜔𝑖 (𝑖 = 1, 2, 3) indicate that the observer has a higher 
bandwidth, which implies faster convergence. However, prior to conver-
gence, the observer output may exhibit large magnitudes and height-
ened sensitivity to noise. Conversely, smaller values of 𝜔𝑖 correspond to 
lower bandwidth, suggesting that the observer produces less overshoot 
and is less sensitive to noise, but at the cost of slower convergence. In 
practical applications, it is essential to strike a balance between conver-
gence speed and overshoot based on specific requirements. In numerical 
simulations, where conditions are relatively idealized, the values of 𝜔𝑖, 
(𝑖 = 1, 2, 3) can be set around 4 to increase the observer bandwidth and 
shorten convergence time. However, in practical implementations, the 
system control frequency typically ranges from 50 Hz to 200 Hz. Under 
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such conditions, an excessively large observer bandwidth may lead to 
divergence.

Thereafter, a sliding mode surface is defined as 

𝑠𝜌 = 𝑒𝜌 + 𝑘𝑒
𝑝1
𝑝2
𝜌1 + 𝑘𝑒̇

𝑝3
𝑝4
𝜌2 , (18)

where 𝜌 𝑙 > 0, 𝜌 2 > 0. 𝑝1, 𝑝2, 𝑝3, and 𝑝4 are all positive odd numbers sat-
isfying 𝑝1𝑝2 >

𝑝3
𝑝4
> 1 and 2 > 𝑝3

𝑝4
> 1. Assuming there are no disturbances 

or uncertain terms in the system, an equivalent control law can be given 
by 

𝜏𝑒𝑞 = −𝐵−1
𝜌

[

𝐴𝜌 +
𝑝4

𝑘𝜌1𝑝3
𝑒̇
2− 𝑝3

𝑝4
𝜌 ◦

(

I3 −
𝑘𝜌1𝑝1
𝑝3

𝑒
𝑝1
𝑝2

−1
𝜌

)]

. (19)

By Wang et al. [41], it can be easily verified that the control matrix 𝐵𝜌
is of full rank and invertible.

In addition, a switching control law is further required to maintain 𝑠𝜌
at the origin when there exist disturbances or uncertainty in the system, 
which is given by 

𝜏𝑠𝑤 = −𝐵−1
𝜌

[

𝑧𝜌3 + 𝑘𝜌3 sgn (𝑠𝜌) + 𝑘𝑟𝜌4𝑠
𝑝5
𝑝6
𝜌

]

, (20)

where 𝑘𝜌3 > 0, 𝑘𝜌4 > 0 are positive constants. 𝑝5 > 𝑝6 > 1 are all positive 
odd parameters. Then, the complete control law for the rotational loop 
can be designed as 
𝜏 = 𝜏𝑒𝑞 + 𝜏𝑠𝑤. (21)

Based on the analysis and derivation aforementioned, the following the-
orem can be concluded.
Theorem 1. For the rotational subsystem of the quadrotor (3) disturbed 
by Δ𝜌, the system is fixed-time stable with the FNTSMC (21) and the 
FTDO (14).
Proof.  Firstly, we need to prove that the sliding mode surface converges 
to the origin in a fixed time.

Choose a Lyapunov function candidate as 𝑉𝜌1 = 1
2 𝑠
⊤
𝜌 𝑠𝜌. Differentiat-

ing 𝑉𝜌1 yields 

𝑉̇𝜌1 = 𝑠⊤𝜌

{

𝑒̇𝜌 +
𝑘𝜌1𝑝1
𝑝2

𝑒
𝑝1
𝑝2

−1
𝜌 ◦𝑒̇𝜌 +

𝑘𝜌2𝑝3
𝑝4

𝑒̇
𝑝3
𝑝4

−1
𝜌 ◦

[

𝐴𝜌 + 𝐵𝜌
(

𝜏𝑒𝑞 + 𝜏𝑠𝑤
)

+ Δ𝜌
]

}

(22)

Substituting controller (21) into 𝑉̇𝜌1 and doing some manipulations 
yield 

𝑉̇𝜌1 = 𝑠⊤𝜌

[

𝑘𝜌2𝑝3
𝑝4

𝑒̇
𝑝3
𝑝4

−1
𝜌 ◦

(

Δ𝜌 − 𝑧𝜌3 − 𝑘𝜌3 sgn (𝑠𝜌) − 𝑘𝜌4𝑠
𝑝5
𝑝6
𝜌

)]

. (23)

Denote Δ̃𝜌 = Δ𝜌 − 𝑧𝜌3 as the estimation error of Δ𝜌 and 𝑘𝜌0 =
𝑘𝜌2𝑝3
𝑝4

𝑒̇
𝑝3
𝑝4

−1
𝜌 , 

which yields

𝑉̇𝜌1 = −𝑘⊤𝜌0◦𝑠
⊤
𝜌

(

𝑘𝜌3 sgn (𝑠𝜌) + 𝑘𝜌4𝑠
𝑝5
𝑝6
𝜌 − Δ̃𝜌

)

= − 𝑘𝜌4𝑘⊤𝜌0𝑠
𝑝5+𝑝6
𝑝6

𝜌

− 𝑘𝜌5𝑘⊤𝜌0|𝑠𝜌| (24)

where 𝑘𝜌5 = 𝑘𝜌3 − ||Δ̃𝜌||2 > 0.
Note the fact that all elements in 𝑘𝜌0 are non-negative. Demoting the 

minimum element in 𝑘𝜌0 as 𝑘𝜌 and using Lemma. 3 yield

𝑉̇𝜌1 ≤ −𝑘𝜌4𝑘𝜌||𝑠𝜌||
𝑝5+𝑝6
2𝑝6

2 − 𝑘𝜌5𝑘𝜌||𝑠𝜌||
1
2
2 = − 𝑘𝜌4𝑘𝜌2

𝑝5+𝑝6
2𝑝6 𝑉

𝑝5+𝑝6
2𝑝6

𝜌1

− 𝑘𝜌5𝑘𝜌
√

2𝑉
1
2
𝜌1 . (25)

Using Lemma. 2 and the fact 𝑝5 > 𝑝6 yield that 𝑠𝜌 is fixed-time stable, 
and the settling time 𝜌2 is bounded by 

𝜌2 ≤
√

2
𝑘𝜌5𝑘𝜌

+
𝑝6

𝑘𝜌4𝑘𝜌
(

𝑝5 − 𝑝6
)2

2𝑝6
𝑝5−𝑝6 . (26)

Secondly, we need to prove that 𝑒𝜌 converges to the origin in a fixed 
time when the states are maintained on the sliding mode surface. 
On the sliding mode surface, we have 𝑒𝜌 + 𝑘𝜌1𝑒

𝑝1
𝑝2
𝜌 + 𝑘𝜌2𝑒̇

𝑝3
𝑝4
𝜌 = 0, yield-

ing 𝑒̇
𝑝3
𝑝4
𝜌 = − 1

𝑘𝜌2

(

𝑒𝜌 + 𝑘𝜌1𝑒
𝑝1
𝑝2
𝜌

)

. Choose a Lyapunov function candidate as 
𝑉𝜌2 =

1
2 𝑒
⊤
𝜌 𝑒𝜌. Differentiating 𝑉𝜌2 along the system trajectory and using 

Eq. (3) yield

𝑉̇𝜌2 = −

[

1
𝑘𝜌2

(

𝑒⊤𝜌
)

𝑝3
𝑝4

(

𝑒𝜌 + 𝑘𝜌1𝑒
𝑝1
𝑝2
𝜌

)]

𝑝4
𝑝3

≤ −

[

1
𝑘𝜌2

||𝑒𝜌||
𝑝3+𝑝4
𝑝4

2 +
𝑘𝜌1
𝑘𝜌2

||𝑒𝜌||
𝑝1
𝑝2

+ 𝑝3
𝑝4

2

]

𝑝4
𝑝3

= −

[

𝜅𝜌1𝑉
𝑝3+𝑝4
2𝑝4

𝜌2 + 𝜅𝜌2𝑉
1
2

( 𝑝1
𝑝2

+ 𝑝3
𝑝4

)

𝜌2

]

𝑝4
𝑝3
, (27)

where 𝜅𝜌1 =
√

2(𝑝3+𝑝4)∕𝑝4
𝑘𝜌2

 and 𝜅𝜌2 =
𝑘𝜌1

√

2𝑝1∕𝑝2+𝑝3∕𝑝4
𝑘𝜌2

.
By Lemma 2, one concludes 𝑒𝜌 converges to the origin in a fixed time, 

and the settling time 𝜌3 can be bounded by 

𝜌3 =
2𝑝3

(𝑝3 − 𝑝4)𝜅
𝑝4∕𝑝3
𝜌1

+
2𝑝2𝑝3

(

𝑝1𝑝4 − 𝑝2𝑝3
)

𝜅𝑝4∕𝑝3𝜌2

. (28)

Therefore, the convergence time of the system with external disturbance 
converges within 𝜌 ≤ 𝜌1 + 𝜌2 + 𝜌3. The proof is completed. ∎
Remark 5. In this study, the term non-singular refers to the issue where 
the denominator appearing in the first derivative of the sliding surface 
variable becomes zero, leading to an undefined system. For example, a 
sliding mode surface 𝑠 = 𝑥̇ + 𝑐𝑥𝑝, 𝑐 > 0, 0 < 𝑝 < 1. Differentiating 𝑠 gives 
𝑠̇ = 𝑥̈ + 𝑐𝑝𝑥𝑝−1𝑥̇. By observing 𝑠̇ we find the singularity probelm occurs 
when 𝑥 = 0 because 𝑝 − 1 < 0. However, in matrix theory, the term sin-
gular refers to a square matrix that is non-invertible. When certain matri-
ces are invertible but have large condition numbers, they are considered 
nearly singular and exhibit poor numerical stability. Such matrices are 
referred to as ill-conditioned. Therefore, in the context of this study and 
its research domain, the term non-singular refers to the first definition.
Remark 6.  In Eq. ((18)), it is obvious to conclude that 𝑝3+𝑝42𝑝4

⋅ 𝑝4𝑝3
=

𝑝3+𝑝4
2𝑝3

∈ (0, 1) and 12
(

𝑝1
𝑝2

+ 𝑝3
𝑝4

)

⋅ 𝑝4𝑝3
= 1

2

(

𝑝1𝑝4
𝑝2𝑝3

+ 1
)

> 1 hold for 𝑝1𝑝2 >
𝑝3
𝑝4
>

1, satisfying the conditions required in Lemma 2.

3.2.  Translational subsystem stability

Similarly, the fixed-time disturbance observer can be designed as

𝑧̇𝜂1,𝑖 = ℵ𝜂,𝑖𝑚𝜂1,𝑖
⌊

𝑒𝜂1,𝑖
⌉𝛼1 + (1 − ℵ𝜂,𝑖)𝑚𝜂1,𝑖

⌊

𝑒𝜂1,𝑖
⌉𝛽1 + 𝑧𝜂2,𝑖,

𝑧̇𝜂2,𝑖 = ℵ𝜂,𝑖𝑚𝜂2,𝑖
⌊

𝑒𝜂1,𝑖
⌉𝛼2 + (1 − ℵ𝜂,𝑖)𝑚𝜂2,𝑖

⌊

𝑒𝜂1,𝑖
⌉𝛽2 + 𝑧𝜂3,𝑖 −

𝑘𝑡
𝑚𝑖
𝜂̇𝑖 + 𝑢𝜂,𝑖,

𝑧̇𝜂3,𝑖 = ℵ𝜂,𝑖𝑚𝜂3,𝑖
⌊

𝑒𝜂1,𝑖
⌉𝛼3 + (1 − ℵ𝜂,𝑖)𝑚𝜂3,𝑖

⌊

𝑒𝜂1,𝑖
⌉𝛽3 , (29)

where 𝑧𝜂1,𝑖, 𝑧𝜂2,𝑖, and 𝑧𝜂3,𝑖 are the estimates of 𝑒𝜂,𝑖,𝑒̇𝜂,𝑖,and Δ𝜂,𝑖,respec-
tively, 𝑒𝜂1,𝑖 = 𝑒𝜂,𝑖 − 𝑧𝜂1,𝑖 is the estimate error of 𝑒𝜂,𝑖. ℵ𝜂,𝑖 is a switching 
parameter and ℵ𝜂,𝑖 = 0 if ||𝑒𝜂,𝑖,1||2 > 𝑒∗𝜂,𝑖 else 1 with 𝑒∗𝜂,𝑖 being the thresh-
old of the estimation error. Moreover, hyper-parameters 𝑚𝜂1,𝑖, 𝑚𝜂2,𝑖, and 

𝑚𝜂3,𝑖 are designed such that matrix Γ𝑚,𝜂,𝑖 =
⎡

⎢

⎢

⎣

−𝑚𝜂1,𝑖 1 0
−𝑚𝜂2,𝑖 0 1
−𝑚𝜂3,𝑖 0 0

⎤

⎥

⎥

⎦

 is Hurwitz. 

Similarly, Δ𝜂,𝑖 can be estimated in fixed-time 𝜂1,𝑖, and the estimation 
error converges to a neighborhood of the origin Ω𝜂,𝑖 [39].

Thereafter, a sliding mode surface for the 𝑖th quadrotor can be de-
fined as 

𝑠𝜂,𝑖 = 𝑒𝜂,𝑖 + 𝑘𝜂1,𝑖𝑒
𝑞1
𝑞2
𝜂,𝑖 + 𝑘𝜂2,𝑖𝑒̇

𝑞3
𝑞4
𝜂,𝑖 , (30)
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where 𝑘𝜂1.𝑖 > 0, 𝑘𝜂2,𝑖 > 0. 𝑞1, 𝑞2, 𝑞3, and 𝑞4 are all positive odd numbers 
satisfying 𝑞1𝑞2 >

𝑞3
𝑞4
> 1 and 2 > 𝑞3

𝑞4
> 1. An equivalent control law is then 

proposed to maintain 𝑠𝜂,𝑖 on the sliding mode surface, which is given by 

𝑢𝜂,𝑖,𝑒𝑞 = − 1
𝑏𝑖 + 𝑑𝑖

[

−

(

𝑏𝑖 + 𝑑𝑖
)

𝑘𝑡,𝑖
𝑚𝑖

𝜂̇𝑖 − Λ𝑖0 +
𝑞4

𝑞3𝑘𝜂2,𝑖
𝜂̇
2−

𝑞3
𝑞4

𝑖 ◦

(

I3 −
𝑞1𝑘𝜂1.𝑖
𝑞2

𝑒
𝑞1
𝑞2

−1

𝜂,𝑖

)]

.

(31)

To handle uncertainties and external disturbances in the translational 
subsystem, a switching control law is required, which is designed as 

𝑢𝜂,𝑖,𝑠𝑤 = − 1
𝑏𝑖 + 𝑑𝑖

[

(

𝑏𝑖 + 𝑑𝑖
)

𝑧𝜂3,𝑖 +
𝑁
∑

𝑖=1
𝑎𝑖𝑗𝑧𝜂3,𝑗 + 𝑘𝜂3,𝑖 sgn (𝑠𝜂,𝑖) − 𝑘𝜂4𝑖𝑠

𝑞5
𝑞6
𝜂,𝑖

]

,

(32)

where 𝑘𝜂3,𝑖 and 𝑘𝜂4𝑖 are positive gains. 𝑞5 > 𝑞6 > 1 are all positive odd 
parameters. Finally, the complete control law is given by 

𝑢𝜂,𝑖 = 𝑢𝜂,𝑖,𝑒𝑞 + 𝑢𝜂,𝑖,𝑠𝑤. (33)

Similar to that of the rotational subsystem, the following theorem guar-
antees the stability of the translational subsystem of the entire quadrotor 
group.

Theorem 2. For the consensus tracking error of the translational subsys-
tems of the quadrotor formation (12) disturbed by Δ𝑖, the system is fixed-time 
stable with FNTSMC (33) and FTDO (29).

Proof.  Firstly, we need to prove 𝑠𝜂,𝑖, 𝑖 = 1, 2,… , 𝑁 converge to the 
origin in fixed time. Choose a Lyapunov function candidate as 𝑉𝜂1 =
1
2
∑𝑁
𝑖=1 𝑠

⊤
𝜂,𝑖𝑠𝜂,𝑖. Differentiating 𝑉𝜂1 yields 

𝑉̇𝜂1 =
𝑁
∑

𝑖=1
𝑠⊤𝜂,𝑖

(

𝑒̇𝜂,𝑖 +
𝑞1𝑘𝜂1.𝑖
𝑞2

𝑒
𝑞1
𝑞2

−1

𝜂,𝑖 ◦𝑒̇𝜂,𝑖 +
𝑞3𝑘𝜂3,𝑖
𝑞4

𝑒̇
𝑞3
𝑞4

−1

𝜂,𝑖 ◦𝑒𝜂,𝑖

)

. (34)

Substituting Eq. (12) into 𝑉̇𝜂1, using controller (33), and doing some 
manipulations yield

𝑉̇𝜂1 =
𝑁
∑

𝑖=1
𝑠⊤𝜂,𝑖

{

𝑒̇𝜂,𝑖 +
𝑞1𝑘𝜂1.𝑖
𝑞2

𝑒
𝑞1
𝑞2

−1

𝜂,𝑖 ◦𝑒̇𝜂,𝑖

+
𝑞3𝑘𝜂3,𝑖
𝑞4

𝑒̇
𝑞3
𝑞4

−1

𝜂,𝑖

[

−
(𝑏𝑖 + 𝑑𝑖)𝑘𝑡,𝑖

𝑚𝑖
𝜂̇𝑖 + (𝑏𝑖 + 𝑑𝑖)𝑢𝜂,𝑖 − Λ𝑖0 + (𝑏𝑖 + 𝑑𝑖)Δ𝜂,𝑖 −

𝑁
∑

𝑗=𝑖
𝑎𝑖𝑗Δ𝜂,𝑗

]}

=
𝑁
∑

𝑖=1
𝑠⊤𝜂,𝑖

{

𝑞3𝑘𝜂2,𝑖
𝑞4

𝑒̇
𝑞3
𝑞4

−1

𝜂,𝑖 ◦

[

(𝑏𝑖 + 𝑑𝑖)
(

Δ𝜂,𝑖 − 𝑧𝜂3,𝑖
)

+
𝑁
∑

𝑗=𝑖
𝑎𝑖𝑗

(

𝑧𝜂3,𝑗 − Δ𝜂,𝑗
)

]}

. (35)

Define the estimatation error of Δ𝜂,𝑖 as Δ̃𝜂,𝑖 = Δ𝜂,𝑖 − 𝑧𝜂3,𝑖 and 𝑘𝜂0,𝑖 =
𝑞3𝑘𝜂2,𝑖
𝑞4

𝑒̇
𝑞3
𝑞4

−1

𝜂,𝑖 . 𝑉̇𝜂1 can be simplified as 

𝑉̇𝜂1 = −
𝑁
∑

𝑖=1
𝑘⊤𝜂0,𝑖◦𝑠

⊤
𝜂,𝑖

{[

𝑘𝜂3,𝑖 sgn (𝑠𝜂,𝑖) + 𝑘𝜂4𝑖𝑠
𝑞5
𝑞6
𝜂,𝑖 − (𝑏𝑖 + 𝑑𝑖)Δ̃𝜂,𝑖 −

𝑁
∑

𝑗=𝑖
𝑎𝑖𝑗 Δ̃𝜂,𝑗

]}

. (36)

Note the fact that all elements in 𝑘𝜂0,𝑖 are non-negative. Using Eq. (3) 
and denoting the minimum element in 𝑘𝜂0,𝑖 as 𝑘𝜂,𝑖 yield

𝑉̇𝜂1 ≤ −
𝑁
∑

𝑖=1
𝑘𝜂,𝑖𝑠

⊤
𝜂,𝑖

{[

𝑘𝜂3,𝑖 sgn (𝑠𝜂,𝑖) + 𝑘𝜂4𝑖𝑠
𝑞5
𝑞6
𝜂,𝑖 − (𝑏𝑖 + 𝑑𝑖)Δ̃𝜂,𝑖 −

𝑁
∑

𝑗=𝑖
𝑎𝑖𝑗Δ̃𝜂,𝑗

]}

= −
𝑁
∑

𝑖=1
𝑘𝜂,𝑖𝑠

⊤
𝜂,𝑖

[

𝑘𝜂3,𝑖 sgn (𝑠𝜂,𝑖) + 𝑘𝜂4𝑖𝑠
𝑞5
𝑞6
𝜂,𝑖

]

=

−
𝑁
∑

𝑖=1
𝑘𝜂,𝑖

[

𝑘𝜂3,𝑖
3
∑

𝑗=1

|

|

|

𝑠𝜂,𝑖,𝑗
|

|

|

+ 𝑘𝜂4𝑖
3
∑

𝑗=1

|

|

|

𝑠𝜂,𝑖,𝑗
|

|

|

1+ 𝑞5
𝑞6
]

(37)

≤ −
𝑁
∑

𝑖=1
𝑘𝜂,𝑖

[

𝑘𝜂3,𝑖||𝑠𝜂,𝑖||
1
2
2 + 𝑘𝜂4𝑖||𝑠𝜂,𝑖||

1
2

(

1+ 𝑞5
𝑞6

)

2

]

≤ −𝑘𝜂3

𝑁
∑

𝑖=1

3
∑

𝑗=1

|

|

|

𝑠𝜂,𝑖,𝑗
|

|

|

− 𝑘𝜂4

𝑁
∑

𝑖=1

3
∑

𝑗=1

|

|

|

𝑠𝜂,𝑖,𝑗
|

|

|

1+ 𝑞5
𝑞6 ,

where 𝑘𝜂3 = min (𝑘𝜂,𝑖, 𝑘𝜂3,𝑖), 𝑘𝜂4 = min (𝑘𝜂,𝑖, 𝑘𝜂4𝑖), and 𝑘𝜂,𝑖 = 𝑘𝜂3,𝑖 − (𝑏𝑖 +
𝑑𝑖)||Δ̃𝜂,𝑖||2 −

∑𝑁
𝑗=1 𝑎𝑖𝑗 ||Δ̃𝜂,𝑗 ||2 > 0 for 𝑖 = 1, 2,… , 𝑁 . Using Lemma 3 

again in Eq. 37 yields

𝑉̇𝜂1 ≤ −𝑘𝜂3

𝑁
∑

𝑖=1

(

||𝑠𝜂,𝑖||
2
2
)

1
2 − 𝑘𝜂4

𝑁
∑

𝑖=1

(

||𝑠𝜂,𝑖||
2
2
)

1
2

(

1+ 𝑞5
𝑞6

)

= −𝑘𝜂3

( 𝑁
∑

𝑖=1
||𝑠𝜂,𝑖||

2
2

)

1
2

− 𝑘𝜂4

( 𝑁
∑

𝑖=1
||𝑠𝜂,𝑖||

2
2

)

1
2

(

1+ 𝑞5
𝑞6

)

= −𝜅𝜂1𝑉
1
2
𝜂1 − 𝜅𝜂2𝑉

1
2

(

1+ 𝑞5
𝑞6

)

𝜂1 , (38)

where 𝜅𝜂1 = 𝑘𝜂3
√

2 and 𝜅𝜂2 = 𝑘𝜂4
√

2(𝑞6+𝑞6)∕𝑞6 . Using Lemma 2 yields that 
𝑠𝜂,𝑖, 𝑖 = 1, 2,… , 𝑁 are fixed-time stable, and the settling time 𝜂2 can be 
bounded by 𝜂2 ≤ 2

𝜅𝜂1
+ 2𝑞6

𝜅𝜂2(𝑞5−𝑞6)
.

Secondly, similar to that of the rotational subsystem, we need 
to prove that the tracking errors of the quadrotor group converge 
to the origin in a fixed time. On the sliding mode surface, there is 

𝑠𝜂,𝑖 = 𝑒𝜂,𝑖 + 𝑘𝜂1.𝑖𝑒
𝑞1
𝑞2
𝜂,𝑖 + 𝑘𝜂2,𝑖𝑒̇

𝑞3
𝑞4
𝜂,𝑖 = 0, yielding 𝑒̇

𝑞3
𝑞4
𝜂,𝑖 = − 1

𝑘𝜂2,𝑖

(

𝑒𝜂,𝑖 + 𝑘𝜂1.𝑖𝑒
𝑞1
𝑞2
𝜂,𝑖

)

. 

A Lyapunov function candidate can be defined as 𝑉𝜂2 = 1
2
∑𝑁
𝑖=1 𝑒

⊤
𝜂,𝑖𝑒𝜂,𝑖. 

Differentiating 𝑉𝜂2 yields

𝑉̇𝜂2 = −
𝑁
∑

𝑖=1

[

1
𝑘𝜂2,𝑖

(

𝑒⊤𝜂,𝑖
)

𝑞3
𝑞4

(

𝑒𝜂,𝑖 + 𝑘𝜂1.𝑖𝑒
𝑝1
𝑝2
𝜂

)]

𝑞4
𝑞3

= −
𝑁
∑

𝑖=1

[

1
𝑘𝜂2,𝑖

(

||𝑒𝜂,𝑖||
2
2
)

1
2

(

1+ 𝑞3
𝑞4

)

+
𝑘𝜂1.𝑖
𝑘𝜂2,𝑖

(

||𝑒𝜂,𝑖||
2
2
)

1
2

( 𝑞3
𝑞4

+ 𝑞1
𝑞2

)
]

𝑞4
𝑞3
. (39)

Using Lemma 3 yields

𝑉̇𝜂2 ≤ −

{ 𝑁
∑

𝑖=1

[

1
𝑘𝜂2,𝑖

(

||𝑒𝜂,𝑖||
2
2
)

1
2

(

1+ 𝑞3
𝑞4

)

+
𝑘𝜂1.𝑖
𝑘𝜂2,𝑖

(

||𝑒𝜂,𝑖||
2
2
)

1
2

( 𝑞3
𝑞4

+ 𝑞1
𝑞2

)
]

}

𝑞4
𝑞3

≤ −

⎡

⎢

⎢

⎢

⎣

1
𝑘𝜂2

( 𝑁
∑

𝑖=1
||𝑒𝜂,𝑖||

2
2

)

1
2

(

1+ 𝑞3
𝑞4

)

+
𝑘𝜂1
𝑘𝜂2

( 𝑁
∑

𝑖=1
||𝑒𝜂,𝑖||

2
2

)

1
2

( 𝑞3
𝑞4

+ 𝑞1
𝑞2

)

⎤

⎥

⎥

⎥

⎦

𝑞4
𝑞3

= −

[

𝜅𝜂1𝑉
1
2

(

1+ 𝑞3
𝑞4

)

𝜂2 + 𝜅𝜂2𝑉
1
2

( 𝑞3
𝑞4

+ 𝑞1
𝑞2

)

𝜂2

]

𝑞4
𝑞3
, (40)

where 𝑘𝜂2 = max(𝑘𝜂1.𝑖, 𝑘𝜂2,𝑖,… , 𝑘𝜂 𝑁,𝑖), 𝜅𝜂1 = 2
( 12+

𝑞3
2𝑞4

)
∕𝑘𝜂2, 𝑘𝜂1 =

min (𝑘𝜂1.𝑖, 𝑘𝜂2,𝑖,… , 𝑘𝜂 𝑁,𝑖), and 𝜅𝜂2 = 𝑘𝜂12
( 𝑞32𝑞4

+ 𝑞1
2𝑞2

)
∕𝑘𝜂2. Using Lemma 2 

indicates that 𝑒𝜂,𝑖, 𝑖 = 1, 2,… , 𝑁 converge to the origin in a fixed-time 
𝜂3, which can be bounded by 

𝜂3 ≤
2𝑞3

(𝑞3 − 𝑞4)𝜅
𝑞4∕𝑞3
𝜂1

+
2𝑞2𝑞3

(

𝑞1𝑞4 − 𝑞2𝑞3
)

𝜅𝑞4∕𝑞3𝜂2

. (41)

Therefore, the translational subsystem of the quadrotor group is fixed-
time stable, and the settling time can be bounded by 𝜂 ≤ 𝜂1 + 𝜂2 + 𝜂3. 
The proof is completed. ∎
Remark 7.  The topological graph used in this study is time-invariant 
and undirected. In practical scenarios, however, directed and time-
varying graphs are required, for example, when the information trans-
mission rate is limited. The works proposed in [42,43] provide strong 
theoretical support for extending from undirected, time-invariant graphs 
to directed, switching graphs. The results in [42,43] ensure that the for-
mation system remains stable under directed and time-varying topolo-
gies. Nevertheless, changes in the topological graph do not affect the 
DRL component in this paper, because DRL-based parameter optimiza-
tion is independent of the traditional control framework. Regardless of 
the specific control method, the control gains can be adaptively tuned 
in real time by DRL, provided that the underlying control scheme guar-
antees system stability.
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Fig. 1. Architecture of the actor and the critic networks.

Table 2 
Some related parameters of the PPO optimizer.
 Symbol  Value  Symbol  Value  Symbol  Value  Symbol  Value
𝑇𝑚 10 d𝑡 0.01 𝑠𝑡𝑑0 0.45 𝑠𝑡𝑑min 0.2
𝑠𝑡𝑑𝑑 0.05 𝑠𝑡𝑑𝑑𝑁 250 𝛾 0.99 𝐾𝑒𝑝 10
𝑏𝑠 𝑇𝑚∕𝑑𝑡 ∗ 2 𝑎𝑙𝑟 10−4 𝑐𝑙𝑟 10−3 𝑐𝑒𝑛 0.01
𝜆 0.95 𝑐min 0.8 𝑐max 1.2 𝑁𝑚 1000

4.  DRL for parameter optimization

In Section 3, a consensus control protocol is designed for the quadro-
tor formation. However, tuning the hyperparameters remains a critical 
issue that needs to be addressed. In this section, DRL is utilized as a 
hyperparameter optimizer for FNTSMCs to achieve improved control 
performance. The basic DRL algorithm employed in this study is Proxi-
mal Policy Optimization (PPO) with Generalized Advantage Estimation 
(GAE) [44]. PPO is designed to ensure monotonic improvement in the 
value function throughout the policy learning process, thereby enhanc-
ing learning robustness. This property is a key reason why PPO has be-
come widely adopted in control-oriented learning tasks. Table 2 sum-
marizes the relevant parameters of PPO with GAE used in this work.

Algorithm 1 PPO with GAE.
𝑟 is the immediate reward
Require: 𝑒𝑝 = 0, 𝑁𝑒, critic net (), actor net ().
1: while 𝑒𝑝 < 𝑁𝑒 do
2:  Collect data buffer .
3:  𝑉𝑔𝑎𝑒 = 0, 𝑉𝑎𝑑𝑣 = [ ], 𝑙𝑔 = [ ]
4:  for each 𝑏 ∈  do
5:  𝑏 = (𝑠, 𝑎, 𝑎𝑙𝑝, 𝑟, 𝑠,𝑑𝑜𝑛𝑒, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠), 𝑣 = (𝑠), 𝑣′ = (𝑠′), 
𝛿 = 𝑟 + 𝛾(1 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)𝑣′ − 𝑣.

6:  𝑉𝑔𝑎𝑒 = 𝛿 + 𝛾𝜆𝑉𝑔𝑎𝑒(1 − 𝑑𝑜𝑛𝑒), 𝑉𝑎𝑑𝑣.𝑎𝑑𝑑(𝑉𝑔𝑎𝑒), 𝑙𝑔 .𝑎𝑑𝑑(𝑎𝑙𝑝)
7:  end for
8:  Calculate the target value function: 𝑉𝑡𝑎𝑟 = 𝑉𝑎𝑑𝑣 + 𝑣.
9:  Calculate the distribution of actor 𝑎𝑐 , the entropy of the distri-
bution 𝑒𝑛, and the

10:  Calculate the log-probability of the distribution 𝑙𝑔 .
11:  𝑎 = 𝑒𝑙𝑔−𝑙𝑔 .
12:  Calculate the surrogate objective: 𝑠1 = 𝑎 ∗ 𝑉𝑎𝑑𝑣, 𝑠2 = 𝑉𝑎𝑑𝑣 ∗

[𝑎.𝑐𝑙𝑖𝑝(𝑐min, 𝑐max)].
13:  Calculate loss function for (): 𝑎 = −𝑚𝑖𝑛(𝑠1, 𝑠2) − 𝑐𝑒𝑛 ∗ 𝑒𝑛.
14:  Update actor net weights ().𝑙𝑒𝑎𝑟𝑛().
15:  Calculate loss function for (): 𝑐 = 1

2 (𝑉𝑡𝑎𝑟 − 𝑉 )2.
16:  Update critic net weights ().𝑙𝑒𝑎𝑟𝑛().
17:  𝑒𝑝+ = 1.
18: end while
19: return ()

The parameter tuning of the DRL-based optimizer is also crucial. 
Compared to other DRL methods such as Soft Actor-Critic, Deep De-
terministic Policy Gradient, and Deep Q-Network, PPO is relatively less 
sensitive to hyperparameter selection. This robustness to hyperparame-
ters is the main reason for choosing PPO as the training framework. Con-
sidering the limited computational capacity of the onboard computer 
for online deployment, the neural network should be kept lightweight. 
After extensive tuning and validation, it is recommended that the net-
work consist of 3 to 5 layers, with no more than 128 neurons per layer. 
In addition to network size, the exploration standard deviation of the 
policy is a critical parameter. To ensure sufficient exploration while 
maintaining rapid convergence, the standard deviation is initialized 
at 𝑠𝑡𝑑0 = 0.45 and gradually reduced by 𝑠𝑡𝑑𝑑 = 0.05 every 𝑠𝑡𝑑𝑑𝑁 = 250
training episodes, with a minimum limit of 𝑠𝑡𝑑min = 0.2. For each train-
ing iteration, the data volume should include at least two complete sim-
ulation trajectories, each with a duration of 𝑇𝑚 = 10𝑠 and a sampling 
period of d𝑡 = 0.01𝑠. Accordingly, the data buffer should store a mini-
mum of 𝑏𝑠 = 𝑇𝑚∕d𝑡 ∗ 2 = 2000 samples. Other parameters largely follow 
the guidelines proposed in [44].

In Table 2, aside from the parameters mentioned above, 𝑁𝑚 denotes 
the maximum number of learning episodes, 𝛾 is the discount factor, 𝐾𝑒𝑝
represents the number of times the neural network (NN) gradients are 
updated in a single learning iteration, and 𝑏𝑠 is the buffer size. The learn-
ing rates of the actor and critic networks are denoted by 𝑎𝑙𝑟 and 𝑐𝑙𝑟, 
respectively. The parameters 𝑐𝑒𝑛, 𝜆, 𝑐min, and 𝑐max are associated with 
the GAE technique, as referenced in [44]. In addition, the maximum 
training episodes are calculated as 𝑁𝑚 = 1000 ⋅ (𝑠𝑡𝑑0−𝑠𝑡𝑑min)

𝑠𝑡𝑑𝑑
+ 1000. The 

pseudocode for PPO with GAE is illustrated in Algorithm 1. For more 
details on the PPO algorithm, readers may refer to [45] and several 
widely cited GitHub repositories1.

The architectures of the actor and critic networks are illustrated in 
Fig. 1. The actor network is a five-layer fully connected neural network, 
with input and output dimensions of 6 and 9, respectively. The input 
represents the tracking error of the quadrotor, while the output corre-
sponds to the learned hyperparameters of the FNTSMC. Note that the 
activation function of the actor network’s output layer is ReLU rather 
than tanh, since the FNTSMC hyperparameters are required to be posi-
tive. The critic network has an input dimension of 15, which equals the 
sum of the input and output dimensions of the actor network. Its out-
put is a scalar representing the state-action value function for the cur-
rent input, which serves as an indicator to evaluate the quality of the 
selected hyperparameters. The learning-based control framework for a 
single quadrotor is shown in Fig. 2. In this framework, the rotational 
and translational loop controls are coupled through the desired roll and 
pitch angles, denoted as 𝜑𝑑 and 𝜃𝑑 . The FNTSMC hyperparameters for 
both loops are optimized simultaneously yet independently by DRL.

1 https://github.com/HKPolyU-UAV/ReinforcementLearningPlatform/tree/
main/algorithm
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Fig. 2. Diagram of the learning-based control framework.

4.1.  Rotational subsystem parameter optimizer training

The controller for the rotational subsystem is utilized in Eq. (21) and 
is tuned by 𝑘𝜌1,𝑖, 𝑘𝜌2,𝑖, 𝑘𝜌3,𝑖, 𝑘𝜌4,𝑖, and 𝑝1 to 𝑝6. First, to ensure the rapid 
convergence of the training process, we select 𝑝1 = 9, 𝑝2 = 7, 𝑝3 = 5, 
𝑝4 = 3, 𝑝5 = 7, and 𝑝6 = 5. Second, to reduce the gap between numer-
ical simulations and real-world experiments, we opted not to rely solely 
on the results learned by DRL. Specifically, the regulation of 𝑘𝜌1,𝑖, 𝑘𝜌2,𝑖, 
and 𝑘𝜌4,𝑖 is assigned to DRL, while 𝑘𝜌3,𝑖 is retained to further enhance 
the robustness of the controller during real-world experiments.

The input and output of the rotational-subsystem optimizer are de-
fined as follows, respectively:

𝜒𝜌,𝑖 =
[

𝑒⊤𝜌,𝑖, 𝑒̇
⊤
𝜌,𝑖

]⊤
∈ ℝ6, (42)

Θ𝜌,𝑖 =
[

𝑘𝜌1,𝑖,𝑥, 𝑘𝜌1,𝑖,𝑦, 𝑘𝜌1,𝑖,𝑧, 𝑘𝜌2,𝑖,𝑥, 𝑘𝜌2,𝑖,𝑦, 𝑘𝜌2,𝑖,𝑧, 𝑘𝜌3,𝑖,𝑥, 𝑘𝜌3,𝑖,𝑦, 𝑘𝜌3,𝑖,𝑧
]⊤ ∈ ℝ9.

The reward function is defined as 

𝐽𝜌,𝑖(𝑡) = −∫

∞

𝑡=0
𝑒−𝛾𝜌(𝑠−𝑡)

(

𝜒⊤𝜌,𝑖𝑄𝜌,𝑖𝜒𝜌,𝑖 + 𝜏
⊤𝑅𝜌,𝑖𝜏

)

d𝑠, (43)

where 𝑄𝜌,𝑖 = diag(𝑄𝑒𝜌,𝑖 , 𝑄𝑒̇𝜌,𝑖 ) with 𝑄𝑒𝜌,𝑖 = I3, 𝑄𝑒̇𝜌,𝑖 = 0.01I3, 𝑅𝜌,𝑖 = 0.01I3, 
and 𝛾𝜌 = 0.99 is the discount factor.
Remark 8.  Note that the DRL training process can be regarded as 
a mathematical approximation to solving an optimal control problem. 
While DRL focuses on maximizing rewards, optimal control aims to min-
imize costs. To reconcile this discrepancy between reward maximization 
and cost minimization, a negative sign is applied to the integral-form 
cost function.

The reward curves during the training process are shown in Fig. 3, 
where a multi-stage training technique [46] is employed to accelerate 
the training process and enhance the robustness of the trained neural 
network (NN). In the first training stage, the control performance ex-
hibits significant fluctuations, as the NNs have not yet fully converged. 
In the subsequent three stages, the initial policies are set based on the re-
sults from the corresponding previous stage. Furthermore, lower learn-
ing rates are adopted for the NNs to reduce fluctuations and improve 
the robustness of the learned optimizer.

Moreover, we collected the control costs of the rotational subsystem 
under various initial conditions and control frameworks to preliminarily 
demonstrate the superiority of the proposed control framework. During 
the evaluation process, the reference angular commands are randomly 
generated as 𝜌𝑑 = 𝐴 sin(2𝜋𝑡∕𝑇 ), where 𝐴 ∈ [0, 𝜋∕3] is the amplitude of 
the reference attitude and 𝑇 ∈ [3 s, 6 s] is the period of the reference sig-
nal. This is illustrated in Fig. 3, which shows that the proposed FNTSMC-
DRL-FTDO control framework outperforms controllers that do not in-
corporate DRL. Notably, pure FNTSMC (without FTDO or DRL) exhibits 

significant fluctuations under strong external disturbances, further high-
lighting the robustness of the proposed control framework.
Remark 9.  To expedite the training of the DRL-based optimizer, the 
neural networks are initially trained in a single-agent interactive en-
vironment, leveraging the homogeneity of the quadrotors. The well-
trained NN-based optimizer is then integrated into the FNTSMC of each 
quadrotor for extensive simulation validation and physical experiments, 
enabling real-time tuning of the FNTSMC hyperparameters.

4.2.  Translational subsystem parameter optimizer training

Similarly, we set 𝑞1 = 9, 𝑞2 = 7, 𝑞3 = 5, 𝑞4 = 3, 𝑞5 = 7, and 𝑞6 = 5. and 
𝑘𝜂3,𝑖 is retained out of the DRL-based optimization framework. The input 
and output of the optimizer of the translational loop are respectively 
defined as

𝜒𝜂,𝑖 =
[

𝑒⊤𝜂,𝑖, 𝑒̇
⊤
𝜂,𝑖

]⊤
∈ ℝ6, (44)

Θ𝜂,𝑖 =
[

𝑘𝜂1,𝑖,𝑥, 𝑘𝜂1,𝑖,𝑦, 𝑘𝜂1,𝑖,𝑧, 𝑘𝜂2,𝑖,𝑥, 𝑘𝜂2,𝑖,𝑦, 𝑘𝜂2,𝑖,𝑧, 𝑘𝜂3,𝑖,𝑥, 𝑘𝜂3,𝑖,𝑦, 𝑘𝜂3,𝑖,𝑧
]⊤ ∈ ℝ9.

The reward function is defined as 

𝐽𝜂,𝑖(𝑡) = −∫

∞

𝑡=0
𝑒−𝛾𝜂 (𝑠−𝑡)

(

𝜒⊤𝜂,𝑖𝑄𝜂,𝑖𝜒𝜂,𝑖 + 𝑢
⊤
𝜂,𝑖𝑅𝜂,𝑖𝑢𝜂,𝑖

)

d𝑡, (45)

where 𝑄𝜂,𝑖 = diag(𝑄𝑒𝜂,𝑖 , 𝑄𝑒̇𝜂,𝑖 ) with 𝑄𝑒𝜂,𝑖 = I3, 𝑄𝑒̇𝜂,𝑖 = 0.1I3 and 𝑅𝜂,𝑖 =
0.01I3, and 𝛾𝜂 = 0.99 is the discount factor.

The curves for the reward during the training process are recorded 
in Fig. 4. The trend of the reward curve is very similar to that of the 
rotational subsystem. In Fig. 4, the red, blue, orange, and green curves 
correspond to the four training stages of the attitude-loop controller, 
with each stage building upon the outcome of the preceding one. Follow-
ing the approach in [46], partitioning the training into multiple stages 
proves more effective for achieving robustness than applying a single 
policy until convergence. This is mainly because, during DRL training, 
the agent may otherwise become trapped in local optima due to in-
sufficient exploration, or the network may diverge or overfit under an 
excessively high learning rate. By interrupting training after a speci-
fied number of episodes and resuming with the current outcome as the 
initial point-while simultaneously reinitializing the value-function net-
work, learning rate, and exploration probability-the procedure facili-
tates the derivation of policies with stronger robustness and improved 
generalization. As shown in Fig. 4, the network exhibits oscillations dur-
ing the first three training stages but gradually stabilizes in the final 
stage. Consequently, the results obtained at the end of the third stage 
were ultimately deployed in the real-world UAV experiments.

The cost surfaces of the translational subsystem control under dif-
ferent initial conditions and various control frameworks are presented 
in Fig. 4, which reveals that the patterns of translational control per-
formance are fundamentally similar to those of the rotational loop. 
The reference trajectory we utilized to test the performance is 𝜂𝑑 =
𝐴 sin(2𝜋𝑡∕𝑇 ), where 𝐴 ∈ [0𝑚, 2.5𝑚] and 𝑇 ∈ [5𝑠, 8𝑠] respectively denote 
the amplitude and period of the position reference signal. The perfor-
mance of the proposed FNTSMC-DRL-FTDO control framework outper-
forms the other three methods. Additionally, the cost of the FNTSMC 
(represented by the green surface) is lower than that of FNTSMC-DRL 
(represented by the cyan surface), further indicating the superiority of 
the DRL technique.

4.3.  Stabilization analysis

Adaptively tuning the gains of a controller using DRL provides sig-
nificant advantages over directly learning the controller itself [30]. Op-
timizing the parameters through reinforcement learning preserves the 
structure of the controller and does not compromise the stability of the 
closed-loop system.

The primary reason for maintaining the stability of the closed-loop 
system lies in the design of the activation function in the output layer 
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Fig. 3. Training and evaluation processes of the rotational subsystem. Subfigure (a) illustrates the variation of the reward function with the number of training 
episodes during the four-stage training process of the rotational-loop controller. The four colors correspond to the four training stages. Subfigure (b) presents a 
comparison of the reward functions under different initial conditions and methods, tested using the well-trained NN parameter optimizer.

Fig. 4. Training and evaluation processes of the translational subsystem. Subfigure (a) illustrates the variation of the reward function with the number of training 
episodes during the four-stage training process of the translational-loop controller. The four colors correspond to the four training stages. Subfigure (b) presents a 
comparison of the reward functions under different initial conditions and methods, tested using the well-trained NN parameter optimizer.

of the actor network. As shown in Fig. 1, the output layer employs the 
ReLU activation function rather than tanh or other alternatives. The use 
of ReLU restricts the control gains of the FNTSMC to the range [0,∞). By 
adding a small positive value 𝜀, the output of the actor network is effec-
tively bounded within (0,∞), naturally satisfying the requirements of the 
FNTSMC design. Even if the DRL parameters are not optimally selected, 
potentially resulting in suboptimal performance of the neural network 
optimizer, the system stability can still be theoretically guaranteed. This 
is because the DRL design in this study operates independently of the 
FNTSMC framework, which is the core principle of the hybrid learning-
based control method proposed herein. Therefore, after training, the de-
ployment of the neural networks in the online control framework does 
not compromise system stability. In the following, guidelines are pro-
vided for several important parameters that are closely related to the 
training stability of the neural networks.

1) Learning rate. The learning rate of the neural network in DRL 
is a critical parameter that directly influences training robustness. 

Empirically, the learning rate of the critic network should be main-
tained within (10−3, 5 × 10−3), while that of the actor network should 
remain in (10−4, 5 × 10−4). If the learning rate is excessively large, the 
training process may diverge. Conversely, if the learning rate is too 
small, the control gains of the FNTSMCs tend to remain near zero, ex-
hibiting negligible variation. Therefore, selecting appropriate learning 
rates is essential for achieving both rapid learning and stable network
performance.

2) Exploration policy. In the PPO framework, the policy is defined 
as a Gaussian policy, where the standard deviation serves as the level 
of exploration. A common practice is to initialize the standard devia-
tion at a relatively large value and gradually decrease it. If the initial 
exploration is too conservative, the policy may converge to a subopti-
mal local minimum. Conversely, if the standard deviation remains ex-
cessively large, the policy may fail to converge. Empirically, a range 
of 0.2 to 0.5 is suitable for the standard deviation of the Gaussian
policy.
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3) Data volume per learning iteration. PPO is an on-policy DRL al-
gorithm, which requires all buffer data to be utilized during training. If 
the maximum duration of each trajectory is 𝑇𝑚 and the sampling period 
is d𝑡, the data size for each trajectory is 𝑁0 =

𝑇𝑚
d𝑡 . The data buffer capac-

ity should be maintained within the range of 2𝑁0 to 4𝑁0. If the buffer 
capacity is too small, the network may fail to capture sufficient informa-
tion during training; conversely, an excessively large buffer may intro-
duce redundant or irrelevant data, especially during the initial training 
phase. Therefore, buffer capacity is a crucial factor affecting the training 
stability of the network.

Algorithm 2 Pseudocode of the control framework.
Require: 𝑁 , , 𝜂𝑑 , 𝜈𝑖, 𝑖 = 1, 2,… , 𝑁 , 𝑇𝑚, d𝑡
Require: rotational parameter optimizer Act𝑎𝑡𝑡, translational parameter 

optimizer Act𝑝𝑜𝑠
1: Load system model, load initial controllers, load observers
2: Load disturbances Δ𝜌,𝑖, Δ𝜂,𝑖, 𝑖 = 1, 2,… , 𝑁
3: 𝑡 = 0
4: while 𝑡 < 𝑇𝑚 do
5:  for 𝑖 = 1 → 𝑁 do
6:  Use observer (29) to estimate Δ𝜂,𝑖
7:  Calculate 𝑒𝜂,𝑖 by (7) and 𝑒̇𝜂,𝑖 by (8)
8:  Get control gains for translational FNTSMC (44) with Act𝑝𝑜𝑠
9:  Generate expected virtural input 𝑢𝜂,𝑖 with (33)
10:  Generate expected attitude and throttle with (6)
11:  Use observer (14) to estimate Δ𝜌,𝑖
12:  Get control gains for rotational FNTSMC (42) with Act𝑎𝑡𝑡
13:  Generate torque inputs with (21)
14:  Quadrotor state update
15:  end for
16:  𝑡+ = d𝑡
17: end while
18: Data save and figure plot

5.  Simulation

This section conducts some numerical simulations to verify the su-
periority and effectiveness of the proposed FNTSMC-FTDO-DRL con-
trol framework. Building upon the results in Sections 3 and 4, the 
pseudocode of the entire control framework can be illustrated in
Algorithm 2.

5.1.  Simulation group 1

The topological graph is shown in Fig. 5. Correspondingly, the adja-
cent matrix 𝑠1, in-degree matrix 𝑠1, communication matrix 𝑠1, and 
Laplacian matrix 𝑠1 are respectively defined as

𝑠1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑠1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑠1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (46)

and 𝑠1 = 𝑠1 −𝑠1. The equation of the geometric center 𝑑 is defined 
as 
𝑥𝑑 = 𝑟𝑑 sin (0.2𝜋𝑡) + 2, 𝑦𝑑 = 𝑟𝑑 cos (0.2𝜋𝑡) + 3, 𝑧𝑑 = sin (0.4𝜋𝑡) + 2 (47)

Fig. 5. Topological graph of simulation 1. The red line segment means the in-
formation can transmit between two nodes. The blue arrow indicates that in-
formation can only be transmitted from the tail node to the head node. (For 
interpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 6. ||𝑒𝜂,𝑖||2 of each quadrotor under different control frameworks in simula-
tion 1.

with 𝑟𝑑 = 5𝑚. The offsets of each quadrotor to 𝑑 , denoted by 𝜈𝑖, 𝑖 =
1, 2,… , 6, are defined as 

𝜈𝑖,𝑥 = 𝑟𝜈 sin (0.2𝜋𝑡 + 𝜙𝑥,𝑖), 𝜈𝑖,𝑦 = 𝑟𝜈 sin (0.2𝜋𝑡 + 𝜙𝑦,𝑖), 𝜈𝑖,𝑧 = 0, (48)

where 𝜙𝑥,𝑖 = 𝜋
2 + (𝑖 − 1) 𝜋3 , 𝜙𝑦,𝑖 = (𝑖 − 1) 𝜋3  and 𝑟𝜈 = 2𝑚.

Fig. 6 illustrates the 2-norm of the tracking errors under six different 
control frameworks. It is evident that the purple curve demonstrates the 
best performance. The red curve also eventually converges to the origin; 
however, in the absence of an adaptive parameter adjustment mech-
anism, significant fluctuations are observed during the initial phase. 
Other controllers maintain system stability but consistently exhibit com-
paratively larger tracking errors.

We further conduct a simulation in which the reference trajectories 
on the XOY plane remain fixed, while the altitude is set to different 
constant values. The corresponding position response of the quadrotor 
group under the “FNTSMC+DRL+FTDO” control framework is shown 
in Fig. 7, where the reference trajectories consist of the superposition 
of two circles with different radii. The disturbances in the simulation 
are modeled as combinations of sine functions with varying amplitudes, 
phases, and periods. Mass uncertainties are applied only to the first four 
quadrotors. Specifically, for 𝑖 = 1, 2, 3, 4, Δ𝑚𝑖 = −0.2𝑘𝑔 when 0 < 𝑡 ≤ 10, 
Δ𝑚𝑖 = 0.2𝑘𝑔 when 10 < 𝑡 ≤ 20, and Δ𝑚𝑖 = 0𝑘𝑔 when 30 < 𝑡 ≤ 40.

The output of the FTDOs is presented in Fig. 8. As shown, the pro-
posed observer converges within approximately 1 second and accurately 
estimates the external disturbances. In particular, the red rectangles 
highlight sudden changes in disturbances caused by abrupt mass vari-
ations in quadrotors 1 to 4. The plotted curves demonstrate that the 
observer can rapidly track the desired signals even under such abrupt 
changes, confirming its effectiveness and robustness. These results val-
idate the fast convergence and strong robustness of the proposed ob-
server against abrupt disturbances.
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Fig. 7. Graphic demonstration of the quadrotor formation in a 3D view of sim-
ulation 1.

5.2.  Simulation group 2

We further test our algorithm with a more complicated topological 
graph and a more aggressive reference trajectory. The topological graph 
of simulation group 2 is shown in Fig. 9. Correspondingly, the adjacency 
matrix 𝑠2, in-degree matrix 𝑠2, communication matrix 𝑠2, and Lapla-
cian matrix 𝑠2 are defined as

𝑠2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑠2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑠2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (49)

and 𝑠2 = 𝑠2 −𝑠2. The equation of the reference trajectory of the ge-
ometric center 𝑑 is defined as 
𝑥𝑑 = 𝑟𝑑 cos (0.2𝜋𝑡) + 2, 𝑦𝑑 = 𝑟𝑑 sin (0.4𝜋𝑡) + 3, 𝑧𝑑 = sin (0.4𝜋𝑡) + 2 (50)

with 𝑟𝑑 = 5𝑚. The offsets of each quadrotor to 𝑑 , denoted by 𝜈𝑖, 𝑖 =
1, 2,… , 6, are defined as
𝜈1 = [𝑟𝜈 , 0, 0]⊤, 𝜈2 = [𝑟𝜈 sin (𝜃0), 𝑟𝜈 cos (𝜃0), 0]⊤,

𝜈3 = [−𝑟𝜈 sin(𝜃0), 𝑟𝜈 cos(𝜃0), 0]⊤,

𝜈4 = [−𝑟𝜈 , 0, 0]⊤, 𝜈5 = [−𝑟𝜈 sin(𝜃0),−𝑟𝜈 cos(𝜃0), 0]⊤,

𝜈6 = [𝑟𝜈 sin(𝜃0),−𝑟𝜈 cos(𝜃0), 0]⊤, (51)

where 𝜃0 = 60◦ and 𝑟𝜈 = 2𝑚.
Fig. 10 shows the 2-norm of the tracking errors under differ-

ent control frameworks. The corresponding three-dimensional po-
sition response of the quadrotor group is presented in Fig. 11, 
while the outputs of the FTDOs are shown in Fig. 12. Simi-
lar to the results in Figs. 6 and 10, the control performances of 
FNTSMC+DRL (cyan curves) and FNTSMC+FTDO (red curves) are 
slightly better than that of the traditional FNTSMC (blue curves), al-
though the tracking errors remain relatively large. In contrast, un-
der the FNTSMC+DRL+FTDO framework, the tracking errors con-

Fig. 8. Output of the observers in simulation 1.

Fig. 9. Topological graph of simulation group 2. The red line segment means 
the information can transmit between two nodes. The blue arrow indicates that 
information can only be transmitted from the tail node to the head node. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 10. ||𝑒𝜂 ||2 of each quadrotor under different control frameworks in simu-
lation 2.

verge rapidly to zero for both the double-circle and ∞-shaped reference
trajectories.

To clearly highlight the performance differences among the various 
control frameworks, we summarize the 𝐿1 and 𝐿2 norms of the con-
sensus tracking errors in the two simulation scenarios. Table 3 provides 
a detailed comparison of the performance of each control method. The 
convergence times of the different methods in the two sets of simulations 
are listed in Table 4. As shown in Tables 3 and 4, the proposed method 
achieves the fastest convergence and exhibits the smallest control errors 
under strong disturbances.
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Table 3 
Tracking errors of the quadrotor formation under two groups of simulations.
 Simulation Group 1

 ¬  ­  ®  ̄  °  ±  ²  Proposed
𝐿2-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||2(×105) 0.79 0.44 0.51 0.91 1.86 0.28 0.17 0.09
𝐿1-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||1(×105) 0.91 0.54 0.62 1.23 2.45 0.20 0.14 0.12
 MSE:a 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖||22 249.35 113.17 132.40 171.01 703.91 35.62 21.25 15.45
 EV:a 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖 − 𝜇𝑒,𝑖||22 134.73 77.13 84.76 12.82 39.53 27.89 18.37 14.05

 Simulation Group 2
b¬ b­  ®b  ̄ b  °b  ±b  ²b  Proposed

𝐿2-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||2(×104) 1.30 1.95 1.05 4.24 9.77 2.16 1.47 0.81
𝐿1-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||1(×105) 0.18 0.27 0.15 0.59 1.41 0.33 0.22 0.12
 MSE: 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖||22 16.74 31.54 15.36 52.28 268.27 31.25 18.65 13.12
 EV: 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖 − 𝜇𝑒,𝑖||22 13.60 23.80 13.32 14.76 35.54 22.19 14.43 11.89

a MSE: Mean Square Error, EV: Error Variance.
b ¬: FNTSMC ­: FNTSMC-FTDO ®: FNTSMC-DRL ̄ : [33] °: [13] ±: LBF-based ²: Power-rate reach-

ing law
Table 4 
The convergence time of different control methods.
 Simulation Group 1  Simulation Group 2
a¬ a­ a® a¯ a° a± a²  Proposed a¬ a­ a® a¯ a° a± a²  Proposed
18.2𝑠 12.5𝑠 12.5𝑠 6.5𝑠 −− 2.5𝑠 7.6𝑠 5.0𝑠 7.5𝑠 10.0𝑠 7.5𝑠 8.1𝑠 −− 5.2𝑠 5.6𝑠 5.0𝑠

a ¬: FNTSMC ­: FNTSMC-FTDO ®: FNTSMC-DRL ̄ : [33] °: [13] ±: LBF-based ²: Power-rate reaching law.

Fig. 11. Graphic demonstration of the quadrotor formation in a 3D view of 
simulation 2.

Fig. 12. Output of the observers in simulation 2.

6.  Physical experiments

This section presents real-world experiments to further validate the 
proposed control framework. The overall experimental setup is illus-
trated in Fig. 13, with the quadrotors used in the experiments shown 
in the bottom part of the figure. Each quadrotor has a mass of 0.722 𝑘𝑔
and a wheelbase of 250 mm. To ensure safety during the experiments, 
the maximum velocity and acceleration of the quadrotors are limited to 
3 𝑚∕𝑠 and 2𝑔 ≈ 19.6 m∕s2, respectively. Four quadrotors are employed 
to demonstrate consensus formation control. To evaluate the robust-
ness of the proposed method under strong disturbances, two types of 
external perturbations are introduced in the experimental environment: 
high-speed rotating fans and weights suspended by elastic ropes. More-
over, aerodynamic interactions among quadrotors in formation, as well 
as discrepancies between each quadrotor’ s center of mass and geomet-
ric centroid, further complicate flight control. The complete hardware 
configuration of the experimental environment is depicted in the top 
part of Fig. 13. Four self-designed quadrotors, each equipped with dis-
tinct night-light colors, are used to form the formation. The flight con-
trol unit (FCU) of each quadrotor is the Holybro Kakute H7 v1.3, which 
runs the open-source PX4-Autopilot firmware. The on-board computer 
is a LattePanda Alpha 864s running Ubuntu 20.04 with ROS Noetic. The 
FCU communicates with the on-board computer via a USB-to-TTL mod-
ule and utilizes the MAVROS protocol for real-time data transmission. 
Quadrotor localization is provided by a VICON indoor positioning sys-
tem equipped with 14 high-resolution optical cameras, delivering pre-
cise position and attitude feedback at a frequency exceeding 200 𝐻𝑧. 
Velocity feedback is obtained by fusing VICON measurements with data 
from the Inertial Measurement Unit (IMU) using a Kalman filter. The 
detailed hardware configuration of the quadrotors is summarized in
Table 5. The ground station computer is used solely for monitoring the 
quadrotor states and collecting experimental data; it does not send any 
control-related commands, as the proposed control protocol is fully dis-
tributed and decentralized.

6.1.  Experiment group 1

The topological graph of the quadrotor group is shown in Fig. 14. 
The adjacent matrix 𝑝1, in-degree matrix 𝑝1, communication matrix 
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Fig. 13. The entire experiment configuration. The flight formation consists of four quadrotors. Each quadrotor is composed of a frame, flight controller, onboard 
computer, propulsion system, and a safety remote controller.

Fig. 14. Topological graph in Experiment Group 1. The red line segment means the information can transmit between two nodes. The blue arrow indicates that 
information can only be transmitted from the tail node to the head node. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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Table 5 
Hardware configuration of the quadrotors.
 Hardware  Configuration  Hardware  Configuration
 Mass of the quadrotor 0.722𝑘𝑔  On-board computer  LattePanda Alpha 864s
 FCU  Holybro Kakute H7 v1.3  Firmware of the FCU  PX4-Autopilot
 Operating system  Ubuntu 20.04 - ROS Noetic  IMU  BMI270 (integrated in the FCU)
 Positioning system  VICON  Motor  VELOX V2207 KV1750
 Battery  4S 2700mAh  Propeller  5.5-inch three-blade propeller
 Wi-Fi transmission delay 4 − 8𝑚𝑠  ESC  Tekko32 F4 4in1 60𝐴 ESC (AM32)

Fig. 15. ||𝑒𝜂 ||2 of each quadrotor under different control frameworks.

Fig. 16. Graphic demonstration of the quadrotor formation in a 3D view.

𝑝1, and Laplacian matrix 𝑝1 are respectively defined as 

𝑝1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑝1 =

⎡

⎢

⎢

⎢

⎢

⎣

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑝1 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

(52)

and 𝑝1 = 𝑝1 − 𝑝1. The geometric center 𝑑 = [0, 0.2, 1.5]⊤ remains 
unchanged. The offsets of each quadrotor to 𝑑 , denoted by 𝜈𝑖, 𝑖 =
1, 2, 3, 4, are defined as
𝜈1 = [1.3 cos (0.4𝜋𝑡), 1.3 sin (0.4𝜋𝑡), 0.3 sin (0.2𝜋𝑡) + 0.5]⊤,

𝜈2 = [−1.3 sin (0.4𝜋𝑡), 1.3 cos (0.4𝜋𝑡),−0.5]⊤,

𝜈3 = [−1.3 cos (0.4𝜋𝑡),−1.3 sin (0.4𝜋𝑡), 0.3 sin (0.2𝜋𝑡) + 0.5]⊤,

𝜈4 = [1.3 sin (0.4𝜋𝑡),−1.3 cos (0.4𝜋𝑡),−0.5]⊤.

Fig. 15 illustrates the 2-norm of the consensus tracking errors un-
der different control frameworks, while the corresponding 3D position 

Fig. 17. Output of the observers in experiment group 1.

response is shown in Fig. 16. The response of the PID controller is rel-
atively smooth; however, it exhibits noticeable steady-state errors and 
phase delays. In contrast, the proposed FNTSMC-DRL-FTDO method out-
performs all other controllers. Benefiting from the integration of the 
FTDO and the DRL-based parameter optimizer, the proposed framework 
demonstrates superior control performance under strong disturbances 
and uncertainties. As highlighted in Fig. 15, the proposed method stabi-
lizes the system within a short duration while avoiding overshoot or os-
cillations, even in the presence of external disturbances. Fig. 18 further 
illustrates that the control gains are time-varying rather than fixed pre-
tuned constants. The gains are initialized at 0 and converge to constant 
values in less than 2 seconds. According to Eq. (44), this convergence is 
primarily attributed to the convergence of the consensus tracking errors 
𝑒𝜂 and 𝑒̇𝜂 .

Fig. 17 presents the corresponding outputs of the FTDO. As observed, 
the outputs in the 𝑥 and 𝑦 directions exhibit noticeable oscillations, 
with periods closely matching those of the reference trajectories for the 
quadrotor formation. This periodic behavior results from the influence 
of the fans, which introduce external disturbances to the quadrotors. 
In the 𝑧 direction, the FTDO output reflects an equivalent weight that 
closely aligns with the masses suspended beneath the quadrotors, fur-
ther demonstrating the effectiveness of the observer. Fig. 18 records the 
real-time control gains 𝑘𝜂1, 𝑘𝜂2, and 𝑘𝜂4, which are adaptively tuned by 
the DRL-based optimizer.

Remark 10.  It should be noted that the DRL-based parameter opti-
mizer employed in this study follows an offline training-online deploy-
ment paradigm. Specifically, the neural network (NN) optimizer is first 
trained offline in a simulation environment. Subsequently, the trained 
NN is deployed across all quadrotors for online execution. During each 
control cycle, the program simultaneously adjusts the controller param-
eters and generates the corresponding control commands. Although the 
offline training process may be time-consuming, the online execution is 
highly efficient. In particular, on the LettaPanda Alpha 864s processor 
used in our system, the execution time for a single run of the NN opti-
mizer is less than 5𝑚𝑠, which ensures that the real-time performance of 
the system is not compromised.
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Fig. 18. Hyperparameters 𝑘𝜂1, 𝑘𝜂2, and 𝑘𝜂4 tuned by DRL in experiment group 1. During the actual experiments, these parameters were optimized separately along 
the 𝑥, 𝑦, and 𝑧 directions.

Fig. 19. Topological graph in Experiment Group 2. The red line segment means 
the information can transmit between two nodes. The blue arrow indicates that 
information can only be transmitted from the tail node to the head node. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 20. ||𝑒𝜂 , 𝑖||2 of each quadrotor under different control frameworks.

Fig. 21. Graphic demonstration of the quadrotor formation in a 3D view.

Fig. 22. Output of the observers in experiment group 2.

6.2.  Experiment group 2

Furthermore, we employed a more aggressive reference trajectory 
to test the performance of the quadrotor formation under more extreme 
environmental conditions. The topological graph of the quadrotor group 
is shown in Fig. 19. The adjacent matrix 𝑝2, in-degree matrix 𝑝2, 
communication matrix 𝑝2, and Laplacian matrix 𝑝2 are respectively 
defined as 

𝑝2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑝2 =

⎡

⎢

⎢

⎢

⎢

⎣

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑝2 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

(53)

and 𝑝2 = 𝑝2 − 𝑝2. The equation for the geometric center 𝑑 is defined 
as 
𝑥𝑑 = cos (0.4𝜋𝑡), 𝑦𝑑 = sin (0.8𝜋𝑡) + 0.2, 𝑧𝑑 = 1.5. (54)

The offsets of each quadrotor to 𝑑 , denoted by 𝜈𝑖, 𝑖 = 1, 2, 3, 4, are de-
fined as
𝜈1 = [0.5, 0, 0.3 sin (0.2𝜋𝑡) + 0.5]⊤, 𝜈2 = [0, 0.8,−0.5]⊤,

𝜈3 = [−0.5, 0, 0.3 sin (0.2𝜋𝑡) + 0.5]⊤, 𝜈4 = [0,−0.8,−0.5]⊤. (55)

Similarly, the gains tuned by DRL, the 2-norm of the tracking errors, 
the position response in a 3D view, and the corresponding output of 
the FTDO are recorded in Figs. 20–23, respectively. The error statisti-
cal curves from Experiment 2 exhibit the same pattern as those from 
Experiment 1, indicating that the proposed control framework consis-
tently outperforms other methods. Specifically, we calculated the sum 
of the 𝐿2 and 𝐿1 norms of the consensus errors for the quadrotor for-
mation, as presented in Table 6, which demonstrates the superiority of 
the FNTSMC-DRL-FTDO method. Finally, as shown in Fig. 22, the os-
cillation frequency of the observer output curve in the 𝑦 direction is 
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Fig. 23. Hyperparameters 𝑘𝜂1, 𝑘𝜂2, and 𝑘𝜂4 tuned by DRL in experiment group 2. During the actual experiments, these parameters were optimized separately along 
the 𝑥, 𝑦, and 𝑧 directions.

Table 6 
Tracking errors of the quadrotor formation under two groups of experiments.
 Experiment Group1

 ¬  ­  ®  ̄  °  ±  Proposed
𝐿2-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||2(×104) 0.7699 0.6668 0.3946 2.3050 0.7705 0.8876 0.2606
𝐿1-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||1(×104) 1.1409 0.9841 0.5905 3.0267 1.1450 1.2361 0.3897
 MSE:a 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖||22 1.3516 1.2391 0.4388 12.6218 1.3572 2.5000 0.1808
 EV:a 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖 − 𝜇𝑒,𝑖||22 0.0615 0.1987 0.0640 1.7743 0.0653 0.4766 0.0340

 Experiment Group2
 ¬b  ­b  ®b  ̄ b  °b  ±b  Proposed

𝐿2-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||2(×103) 6.6189 3.5926 3.5141 8.5403 7.3302 3.2625 1.9650
𝐿1-norm: ∑𝑖 ∫ ||𝑒𝜂,𝑖||1(×104) 0.9820 0.5438 0.5319 1.1355 1.0839 0.4707 0.2926
 MSE: 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖||22 1.9232 0.6389 0.6055 3.7708 2.5496 0.5862 0.2336
 EV: 1

𝑇

∑

𝑖 ∫ ||𝑒𝜂,𝑖 − 𝜇𝑒,𝑖||22 0.1279 0.1193 0.1006 0.8509 0.3004 0.1579 0.0741

a MSE: Mean square error, EV: Error variance.
b ¬: FNTSMC ­: FNTSMC-FTDO ®: FNTSMC-DRL ̄ : PX4-PID °: [33] ±: [13].

approximately twice that of the 𝑥 direction, which aligns perfectly with 
the characteristics of the pre-defined reference trajectory.

7.  Conclusions

This paper presents a novel robust control framework for quadrotor 
formations that integrates FNTSMCs, DRL techniques, and FTDOs. First, 
FNTSMCs are designed for the closed-loop system to ensure rapid and 
robust tracking. Next, FTDOs are employed to accurately estimate the 
uncertainties and external disturbances affecting the quadrotors within 
a fixed time. The observer outputs are then incorporated into the switch-
ing control laws, enhancing controller robustness and improving overall 
control performance. The fixed-time stability of the multi-agent system 
is rigorously guaranteed in the Lyapunov sense. To further improve per-
formance, DRL is used to train a parameter optimizer that adaptively 
tunes selected hyperparameters of the FNTSMCs based on the quadro-
tors’ tracking errors. Finally, extensive simulations and physical exper-
iments are conducted to validate the effectiveness and robustness of 
the proposed framework. Our future work will focus on extending this 
framework to multi-quadrotor formation systems with communication 
delays and switching topologies.
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Notations related to quadrotor mathematical model:

Notations related to topological graph:

Notations related to controller design and DRL:
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