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Formation control of quadrotors is particularly challenging under external disturbances and dynamic mission
requirements. This paper introduces a hybrid control framework that combines fixed-time control with deep
reinforcement learning (DRL) to achieve adaptive and robust multi-quadrotor formation control. A fixed-time
disturbance observer (FTDO) is designed to accurately estimate disturbances, while a fully distributed fast non-
singular terminal sliding mode controller ensures fixed-time convergence of both translational and rotational
dynamics without singularities. To enhance adaptivity, a DRL-based mechanism enables online parameter tun-
ing, thereby improving flight performance without compromising system stability. Both simulations and real-

world experiments validate the effectiveness of the proposed framework, showing an average 50 % reduction in
consensus tracking error compared with non-adaptive baselines.

1. Introduction

In recent years, multi-quadrotor technology has attracted growing
attention in applications such as search and rescue [1], post-disaster
relief [2], environmental monitoring [3], and logistics delivery [4]. De-
spite rapid progress, enabling autonomous flight for multiple quadrotors
still faces several critical technical and theoretical challenges, including
cooperative localization, 3D map reconstruction, obstacle avoidance,
and formation control. Cooperative localization allows multiple agents
to estimate their positions by sharing relative measurements and sensor
data, offering greater accuracy and robustness than individual localiza-
tion, particularly in GPS-denied or cluttered environments [5,6]. Sim-
ilarly, cooperative 3D reconstruction enables agents to collaborate in
sensing, exchanging, and fusing spatial information to generate a com-
prehensive environmental model, thereby improving accuracy, spatial
coverage, and robustness in large-scale or complex scenarios [7,8]. Af-
ter building a 3D map, clustering algorithms can group sensor-detected
objects into obstacles, making cooperative obstacle avoidance essen-
tial for safe navigation. By sharing perception and coordinating maneu-
vers, multiple agents can reduce collision risks and improve efficiency
in dynamic environments compared with independent avoidance strate-
gies [9,10]. Obstacle avoidance ensures collision-free trajectories, while
cooperative control guarantees that each quadrotor tracks its assigned
trajectory within the specified time to accomplish the mission. Com-

* Corresponding author.
E-mail address: kangl.liu@polyu.edu.hk (K. Liu).

https://doi.org/10.1016/j.ast.2025.111133

pared with single-quadrotor systems, multi-quadrotor systems exhibit
superior capabilities in executing complex and large-scale tasks. Conse-
quently, consensus-based formation control is vital for maintaining coor-
dinated behavior among agents and enabling them to preserve a desired
formation under dynamic environments and task requirements [11,12].

Among the challenges associated with multi-quadrotor formation
flight, this paper focuses on the problem of consensus control. Consid-
erable research has been conducted in this field. For example, Wang et
al. [13] investigated a fully distributed dynamic event-triggered con-
trol scheme for quadrotors subject to unknown perturbations and in-
put saturation, while Khodaverdian et al. [14] proposed a predictor-
based sliding mode controller (SMC) for formation flight. To address
the impact of uncertainties and external disturbances, Liu et al. [15]
developed a finite-time adaptive control protocol, Zhang et al. [16]
designed a prescribed finite-time distributed controller with aperiodic
updates based on fuzzy logic, and Nie et al. [17] introduced a dis-
tributed asynchronous SMC method for multi-agent systems. Among
these approaches, sliding mode control has attracted particular attention
due to its robustness, fast response, and relatively simple design. Sev-
eral studies have extended SMC-based frameworks for multi-quadrotor
applications. Liang et al. [18] combined backstepping with SMC for
multi-aircraft aerial transportation, while Hou et al. [19] developed
an adaptive SMC method for trajectory tracking under environmen-
tal uncertainties. Liang et al. [20] further enhanced quadrotor func-
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$\kappa _{\rho 2}=\frac {k_{\rho 1}\sqrt {2^{p_1/p_2 + p_3/p_4}}}{k_{\rho 2}}$


$e_\rho $


$\mathcal {T}_{\rho 3}$


\begin {align}\mathcal {T}_{\rho 3} = \frac {2p_3}{(p_3-p_4)\kappa _{\rho 1}^{p_4/p_3}}+\frac {2p_2p_3}{\bracketsS {p_1p_4-p_2p_3}\kappa _{\rho 2}^{p_4/p_3}}.\end {align}


$\mathcal {T}_{\rho } \leq \mathcal {T}_{\rho 1} + \mathcal {T}_{\rho 2} + \mathcal {T}_{\rho 3}$


$s=\dot {x} + cx^p$


$c > 0$


$0 < p < 1$


$s$


$\dot {s}=\ddot {x} + cpx^{p-1}\dot {x}$


$\dot {s}$


$x = 0$


$p - 1 < 0$


$\frac {p_3+p_4}{2p_4}\cdot \frac {p_4}{p_3}=\frac {p_3+p_4}{2p_3}\in (0, 1)$


$\frac {1}{2}\bracketsS {\frac {p_1}{p_2}+\frac {p_3}{p_4}}\cdot \frac {p_4}{p_3}=\frac {1}{2}\bracketsS {\frac {p_1p_4}{p_2p_3}+1}>1$


$\frac {p_1}{p_2} > \frac {p_3}{p_4} > 1$


\begin {align}\label {chap6::obs_outer} \dot {z}_{\eta 1,i}&=\aleph _{\eta ,i}m_{\eta 1,i}\sig {\tilde {e}_{\eta 1,i}}{\alpha _1}+(1-\aleph _{\eta ,i})m_{\eta 1,i}\sig {\tilde {e}_{\eta 1,i}}{\beta _1}+z_{\eta 2,i},\nonumber \\ \dot {z}_{\eta 2,i}&=\aleph _{\eta ,i}m_{\eta 2,i}\sig {\tilde {e}_{\eta 1,i}}{\alpha _2}+(1-\aleph _{\eta ,i})m_{\eta 2,i}\sig {\tilde {e}_{\eta 1,i}}{\beta _2}+z_{\eta 3,i}-\frac {k_t}{m_i}\dot {\eta }_i+u_{\eta ,i},\nonumber \\ \dot {z}_{\eta 3,i}&=\aleph _{\eta ,i}m_{\eta 3,i}\sig {\tilde {e}_{\eta 1,i}}{\alpha _3}+(1-\aleph _{\eta ,i})m_{\eta 3,i}\sig {\tilde {e}_{\eta 1,i}}{\beta _3},\end {align}


$z_{\eta 1,i}$


$z_{\eta 2,i}$


$z_{\eta 3,i}$


$e_{\eta , i}$


$\dot {e}_{\eta , i}$


$\Delta _{\eta , i}$


$\tilde {e}_{\eta 1,i}=e_{\eta ,i}-z_{\eta 1,i}$


$e_{\eta ,i}$


$\aleph _{\eta , i}$


$\aleph _{\eta ,i}= 0 \mbox { if } ||\tilde {e}_{\eta ,i,1}||_2 > e_{\eta ,i}^* \mbox { else } 1$


$e_{\eta ,i}^*$


$m_{\eta 1,i}$


$m_{\eta 2,i}$


$m_{\eta 3,i}$


$\Gamma _{m,\eta ,i}=\begin {bmatrix} -m_{\eta 1,i} & 1 & 0 \\ -m_{\eta 2,i} & 0 & 1 \\ -m_{\eta 3,i} & 0 & 0 \end {bmatrix}$


$\Delta _{\eta , i}$


$\mathcal {T}_{\eta 1, i}$


$\Omega _{\eta , i}$


$i$


\begin {align}\label {smeta} s_{\eta ,i}=e_{\eta ,i} + k_{\eta {1,i}}e_{\eta ,i}^{\frac {q_1}{q_2}} + k_{\eta {2,i}}\dot {e}_{\eta , i}^{\frac {q_3}{q_4}},\end {align}


$k_{\eta {1.i}} > 0$


$k_{\eta {2,i}} > 0$


$q_1$


$q_2$


$q_3$


$q_4$


$\frac {q_1}{q_2}>\frac {q_3}{q_4}>1\mbox { and }2>\frac {q_3}{q_4}>1$


$s_{\eta , i}$


\begin {align}u_{\eta ,i,eq}=-\frac {1}{b_i+d_i}\left [-\frac {\bracketsS {b_i+d_i}k_{t,i}}{m_i}\dot {\eta }_i-\Lambda _{i0}+\frac {q_4}{q_3k_{\eta {2,i}}}\dot {\eta }_i^{2-\frac {q_3}{q_4}}\circ \left (\textbf {I}_3-\frac {q_1k_{\eta {1.i}}}{q_2}e_{\eta ,i}^{\frac {q_1}{q_2}-1}\right )\right ].\end {align}


\begin {align}u_{\eta ,i,sw}=&-\frac {1}{b_i+d_i}\left [\bracketsS {b_i+d_i}z_{\eta 3,i}+\sum _{i=1}^{N}{a_{ij}z_{\eta 3,j}}+k_{\eta 3,i}\sgn {(s_{\eta ,i})}-k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}\right ],\end {align}


$k_{\eta 3,i}$


$k_{\eta 4i}$


$q_5 > q_6 > 1$


\begin {align}\label {chap6::ctrl_outer} u_{\eta ,i}=u_{\eta ,i,eq}+u_{\eta ,i,sw}.\end {align}


$\Delta _i$


$s_{\eta , i}$


$i=1,2,\ldots , N$


$V_{\eta 1}=\frac {1}{2}\sum _{i=1}^{N}{s_{\eta ,i}^\top s_{\eta ,i}}$


$V_{\eta 1}$


\begin {align}\dot {V}_{\eta 1} =\sum _{i=1}^{N}{s_{\eta ,i}^\top \left (\dot {e}_{\eta ,i} + \frac {q_1k_{\eta {1.i}}}{q_2}e_{\eta ,i}^{\frac {q_1}{q_2}-1}\circ \dot {e}_{\eta ,i}+\frac {q_3k_{\eta 3,i}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}\circ \ddot {e}_{\eta ,i}\right )}.\end {align}


$\dot {V}_{\eta 1}$


\begin {align}\dot {V}_{\eta 1} =&\sum _{i=1}^{N}{s_{\eta ,i}^\top \left \{\dot {e}_{\eta ,i} + \frac {q_1k_{\eta {1.i}}}{q_2}e_{\eta ,i}^{\frac {q_1}{q_2}-1}\circ \dot {e}_{\eta ,i}\right .} \nonumber \\ &+\frac {q_3k_{\eta 3,i}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}\left [-\frac {(b_i+d_i)k_{t,i}}{m_i}\dot {\eta }_i+(b_i+d_i)u_{\eta ,i}-\Lambda _{i0}+(b_i+d_i)\Delta _{\eta ,i}-\sum _{j=i}^{N}{a_{ij}\Delta _{\eta ,j}}\right ]\Bigg \}\nonumber \\ =&\sum _{i=1}^{N}s_{\eta ,i}^\top \left \{\frac {q_3k_{\eta {2,i}}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}\circ \left [(b_i+d_i)\bracketsS {\Delta _{\eta ,i}-z_{\eta 3,i}}+\sum _{j=i}^{N}{a_{ij}\bracketsS {z_{\eta 3,j}-\Delta _{\eta ,j}}}\right ]\right \}.\end {align}


$\Delta _{\eta ,i}$


$\tilde {\Delta }_{\eta ,i}=\Delta _{\eta ,i}-z_{\eta 3,i}$


$k_{\eta 0, i}=\frac {q_3k_{\eta {2,i}}}{q_4}\dot {e}_{\eta ,i}^{\frac {q_3}{q_4}-1}$


$\dot {V}_{\eta 1}$


\begin {align}\dot {V}_{\eta 1}=-\sum _{i=1}^{N}k_{\eta 0, i}^\top \circ s_{\eta ,i}^\top \left \{\left [k_{\eta 3,i}\sgn {(s_{\eta ,i})}+k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}-(b_i+d_i)\tilde {\Delta }_{\eta ,i}-\sum _{j=i}^{N}{a_{ij}\tilde {\Delta }_{\eta ,j}}\right ]\right \}.\end {align}


$k_{\eta 0, i}$


$k_{\eta 0, i}$


$k_{\eta , i}$


\begin {align}\label {eq36} \dot {V}_{\eta 1}&\leq -\sum _{i=1}^{N}k_{\eta , i} s_{\eta ,i}^\top \Big \{\Big [k_{\eta 3,i}\sgn {(s_{\eta ,i})}+k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}-(b_i+d_i)\tilde {\Delta }_{\eta ,i}-\sum _{j=i}^{N}{a_{ij}\tilde {\Delta }_{\eta ,j}}\Big ]\Big \}\nonumber \\ &=-\sum _{i=1}^{N}k_{\eta , i} s_{\eta ,i}^\top \Big [k_{\eta 3,i}\sgn {(s_{\eta ,i})}+k_{\eta 4i}s_{\eta ,i}^{\frac {q_5}{q_6}}\Big ]=\notag \\&-\sum _{i=1}^{N}k_{\eta , i}\Big [k_{\eta 3,i}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}}+k_{\eta 4i}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}^{1+\frac {q_5}{q_6}}}\Big ]\\ &\leq -\sum _{i=1}^{N}k_{\eta , i}\Big [k_{\eta 3,i}||s_{\eta ,i}||_2^\frac {1}{2}+k_{\eta 4i}||s_{\eta ,i}||_2^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}}\Big ]\notag \\&\leq -\underline {k}_{\eta 3}\sum _{i=1}^{N}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}}-\underline {k}_{\eta 4}\sum _{i=1}^{N}\sum _{j=1}^{3}{\absv {s_{\eta ,i,j}}^{1+\frac {q_5}{q_6}}},\notag \end {align}


$\underline {k}_{\eta 3}=\min {(k_{\eta , i}, k_{\eta 3,i})}$


$\underline {k}_{\eta 4}=\min {(k_{\eta , i}, k_{\eta 4i})}$


$k_{\eta ,i} = k_{\eta 3,i} - (b_i+d_i)||\tilde {\Delta }_{\eta ,i}||_2 - \sum _{j=1}^{N}{a_{ij}||\tilde {\Delta }_{\eta ,j}||_2} > 0$


$i=1,2,\ldots , N$


\begin {align}\dot {V}_{\eta 1} &\leq -\underline {k}_{\eta 3}\sum _{i=1}^{N}{\bracketsS {||s_{\eta ,i}||_2^2}^{\frac {1}{2}}}-\underline {k}_{\eta 4}\sum _{i=1}^{N}{\bracketsS {||s_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}}}\nonumber \\ &=-\underline {k}_{\eta 3}\left (\sum _{i=1}^{N}{||s_{\eta ,i}||_2^2}\right )^\frac {1}{2}-\underline {k}_{\eta 4}\left (\sum _{i=1}^{N}{||s_{\eta ,i}||_2^2}\right )^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}}\nonumber \\ &=-\kappa _{\eta 1}V_{\eta 1}^{\frac {1}{2}}-\kappa _{\eta 2}V_{\eta 1}^{\frac {1}{2}\bracketsS {1+\frac {q_5}{q_6}}},\end {align}


$\kappa _{\eta 1}=\underline {k}_{\eta 3}\sqrt {2}$


$\kappa _{\eta 2} = \underline {k}_{\eta 4}\sqrt {2^{(q_6+q_6)/q_6}}$


$s_{\eta ,i}, i=1,2,\ldots ,N$


$\mathcal {T}_{\eta 2}$


$\mathcal {T}_{\eta 2}\leq \frac {2}{\kappa _{\eta 1}}+\frac {2q_6}{\kappa _{\eta 2}(q_5-q_6)}$


$s_{\eta ,i}=e_{\eta ,i} + k_{\eta {1.i}}e_{\eta ,i}^{\frac {q_1}{q_2}} + k_{\eta {2,i}}\dot {e}_{\eta , i}^{\frac {q_3}{q_4}}=0$


$\dot {e}_{\eta , i}^{\frac {q_3}{q_4}}=-\frac {1}{k_{\eta {2,i}}}\left (e_{\eta ,i} + k_{\eta {1.i}}e_{\eta ,i}^{\frac {q_1}{q_2}}\right )$


$V_{\eta 2}=\frac {1}{2}\sum _{i=1}^{N}{e_{\eta ,i}^\top e_{\eta ,i}}$


$V_{\eta 2}$


\begin {align}\dot {V}_{\eta 2} &=-\sum _{i=1}^{N}\bracketsM {\frac {1}{k_{\eta {2,i}}}\bracketsS {e_{\eta ,i}^\top }^{\frac {q_3}{q_4}}\bracketsS {e_{\eta , i}+k_{\eta {1.i}}e_\eta ^{\frac {p_1}{p_2}}}}^{\frac {q_4}{q_3}}\nonumber \\ &=-\sum _{i=1}^{N}\left [\frac {1}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\frac {k_{\eta {1.i}}}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}\right ]^{\frac {q_4}{q_3}}.\end {align}


\begin {align}\dot {V}_{\eta 2} &\leq -\left \{\sum _{i=1}^{N}\left [\frac {1}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\frac {k_{\eta {1.i}}}{k_{\eta {2,i}}}\bracketsS {||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}\right ]\right \}^{\frac {q_4}{q_3}}\nonumber \\ &\leq -\left [\frac {1}{\overline {k}_{\eta 2}}\bracketsS {\sum _{i=1}^{N}||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\frac {\underline {k}_{\eta 1}}{\overline {k}_{\eta 2}}\bracketsS {\sum _{i=1}^{N}||e_{\eta ,i}||_2^2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}\right ]^{\frac {q_4}{q_3}}\nonumber \\ &=-\bracketsM {\kappa _{\eta 1}V_{\eta 2}^{\frac {1}{2}\bracketsS {1+\frac {q_3}{q_4}}}+\kappa _{\eta 2}V_{\eta 2}^{\frac {1}{2}\bracketsS {\frac {q_3}{q_4}+\frac {q_1}{q_2}}}}^{\frac {q_4}{q_3}},\end {align}


$\overline {k}_{\eta 2}=$


$\max (k_{\eta {1.i}}, k_{\eta {2,i}}, \ldots , k_{\eta \,{N,i}})$


$\kappa _{\eta 1}=$


$2^{(\frac {1}{2}+\frac {q_3}{2q_4})}/\overline {k}_{\eta 2}$


$\underline {k}_{\eta 1}=$


$\min {(k_{\eta {1.i}}, k_{\eta {2,i}}, \ldots , k_{\eta \,{N,i}})}$


$\kappa _{\eta 2}=$


$\underline {k}_{\eta 1}2^{(\frac {q_3}{2q_4}+\frac {q_1}{2q_2})}/\overline {k}_{\eta 2}$


$e_{\eta ,i}, i=1,2,\ldots ,N$


$\mathcal {T}_{\eta 3}$


\begin {align}\mathcal {T}_{\eta 3} \leq \frac {2q_3}{(q_3-q_4)\kappa _{\eta 1}^{q_4/q_3}}+\frac {2q_2q_3}{\bracketsS {q_1q_4-q_2q_3}\kappa _{\eta 2}^{q_4/q_3}}.\end {align}


$\mathcal {T}_{\eta } \leq \mathcal {T}_{\eta 1} + \mathcal {T}_{\eta 2} + \mathcal {T}_{\eta 3}$


$3$


$5$


$128$


$std_0=0.45$


$std_d=0.05$


$std_{dN}=250$


$std_{\min }=0.2$


$T_m=10{s}$


$\mathrm {d}t=0.01{s}$


$b_s=T_m/\mathrm {d}t*2=2000$


$N_m$


$\gamma $


$K_{ep}$


$b_s$


$a_{lr}$


$c_{lr}$


$c_{en}$


$\lambda $


$c_{\min }$


$c_{\max }$


$N_m = 1000 \cdot \frac {(std_0 - std_{\min })}{std_d} + 1000$


$6$


$9$


$15$


$\varphi _d$


$\theta _d$


$k_{\rho 1, i}$


$k_{\rho 2, i}$


$k_{\rho 3, i}$


$k_{\rho 4, i}$


$p_1$


$p_6$


$p_1 = 9$


$p_2 = 7$


$p_3 = 5$


$p_4 = 3$


$p_5 = 7$


$p_6 = 5$


$k_{\rho 1, i}$


$k_{\rho 2, i}$


$k_{\rho 4, i}$


$k_{\rho 3, i}$


\begin {align}\label {eq50} \chi _{\rho ,i}&=\left [e_{\rho ,i}^\top , \dot {e}_{\rho ,i}^\top \right ]^\top \in \mathbb {R}^6,\\ \Theta _{\rho ,i}&=\left [k_{\rho 1, i, x}, k_{\rho 1, i, y}, k_{\rho 1, i,z}, k_{\rho 2, i,x}, k_{\rho 2, i,y}, k_{\rho 2, i,z}, k_{\rho 3, i,x}, k_{\rho 3, i,y}, k_{\rho 3, i,z}\right ]^\top \in \mathbb {R}^9.\nonumber \end {align}


\begin {align}J_{\rho ,i}(t)=-\int _{t=0}^{\infty }{e^{-\gamma _\rho (s-t)}\bracketsS {\chi _{\rho ,i}^\top Q_{\rho ,i}\chi _{\rho ,i}+\tau ^\top R_{\rho ,i}\tau }}\mathrm {d}s,\end {align}


$Q_{\rho ,i}=\diag (Q_{e_{\rho ,i}}, Q_{\dot {e}_{\rho ,i}})$


$Q_{e_{\rho ,i}}=\textbf {I}_3$


$Q_{\dot {e}_{\rho ,i}}=0.01\textbf {I}_3$


$R_{\rho ,i}=0.01\textbf {I}_3$


$\gamma _\rho =0.99$


$\rho _d = A \sin (2\pi t / T)$


$A \in [0, \pi /3]$


$T \in [3~\mathrm {s}, 6~\mathrm {s}]$


$q_1 = 9$


$q_2=7$


$q_3=5$


$q_4=3$


$q_5=7$


$q_6=5$


$k_{\eta 3, i}$


\begin {align}\label {yyf1} \chi _{\eta , i}&=\left [e_{\eta , i}^\top , \dot {e}_{\eta , i}^\top \right ]^\top \in \mathbb {R}^6,\\ \Theta _{\eta , i}&=\left [k_{\eta 1, i,x}, k_{\eta 1, i,y}, k_{\eta 1, i,z}, k_{\eta 2, i,x}, k_{\eta 2, i,y}, k_{\eta 2, i,z}, k_{\eta 3,i, x}, k_{\eta 3, i,y}, k_{\eta 3, i,z}\right ]^\top \in \mathbb {R}^9.\nonumber \end {align}


\begin {align}J_{\eta , i}(t)=-\int _{t=0}^{\infty }{e^{-\gamma _\eta (s-t)}\bracketsS {\chi _{\eta , i}^\top Q_{\eta , i}\chi _{\eta , i}+u_{\eta , i}^\top R_{\eta , i}u_{\eta , i}}}\mathrm {d}t,\end {align}


$Q_{\eta , i}=\diag (Q_{e_{\eta , i}}, Q_{\dot {e}_{\eta , i}})$


$Q_{e_{\eta , i}}=\textbf {I}_3$


$Q_{\dot {e}_{\eta , i}}=0.1\textbf {I}_3$


$R_{\eta , i}=0.01\textbf {I}_3$


$\gamma _\eta =0.99$


$\eta _d=A\sin (2\pi t / T)$


$A\in [0{m}, 2.5{m}]$


$T\in [5{s}, 8{s}]$


$[0, \infty )$


$\varepsilon $


$(0, \infty )$


$(10^{-3}, 5\times 10^{-3})$


$(10^{-4}, 5\times 10^{-4})$


$0.2$


$0.5$


$T_m$


$\mathrm {d}t$


$N_0 = \frac {T_m}{\mathrm {d}t}$


$2N_0$


$4N_0$


$1$


$1$


$\mathcal {A}_{s1}$


$\mathcal {D}_{s1}$


$\mathcal {B}_{s1}$


$\mathcal {L}_{s1}$


\begin {align}&\mathcal {A}_{s1}= \begin {bmatrix} 0 & 1 & 1 & 1 & 1 & 1\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0 \end {bmatrix},~ \mathcal {D}_{s1}=\begin {bmatrix} 5 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end {bmatrix},~\notag \\ &\mathcal {B}_{s1}=\begin {bmatrix} 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end {bmatrix},\end {align}


$\mathcal {L}_{s1} = \mathcal {D}_{s1} - \mathcal {A}_{s1}$


$\mathcal {O}_d$


\begin {align}x_d=r_d\sin {(0.2\pi t)}+2,~y_d=r_d\cos {(0.2\pi t)}+3,~z_d=\sin {(0.4\pi t)}+2\end {align}


$r_d=5m$


$\mathcal {O}_d$


$\nu _i, i=1,2,\ldots ,6$


\begin {align}\nu _{i,x}=r_\nu \sin {(0.2\pi t+\phi _{x,i})},~\nu _{i,y}=r_\nu \sin {(0.2\pi t+\phi _{y,i})},~\nu _{i,z}=0,\end {align}


$\phi _{x,i} = \frac {\pi }{2} + (i-1)\frac {\pi }{3}$


$\phi _{y,i} = (i-1)\frac {\pi }{3}$


$r_\nu =2m$


$||e_{\eta , i}||_2$


$2$


$i=1,2,3,4$


$\Delta m_i=-0.2{kg}$


$0 < t \leq 10$


$\Delta m_i=0.2{kg}$


$10 < t \leq 20$


$\Delta m_i=0{kg}$


$30 < t \leq 40$


$1$


$1$


$4$


$2$


$2$


$\mathcal {A}_{s2}$


$\mathcal {D}_{s2}$


$\mathcal {B}_{s2}$


$\mathcal {L}_{s2}$


\begin {align}&\mathcal {A}_{s2}= \begin {bmatrix} 0 & 1 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 \end {bmatrix},~ \mathcal {D}_{s2}=\begin {bmatrix} 2 & 0 & 0 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0 & 0\\ 0 & 0 & 0 & 3 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end {bmatrix},\notag \\ &\mathcal {B}_{s2}=\begin {bmatrix} 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end {bmatrix},\end {align}


$\mathcal {L}_{s2} = \mathcal {D}_{s2} - \mathcal {A}_{s2}$


$\mathcal {O}_d$


\begin {align}x_d=r_d\cos {(0.2\pi t)}+2,~y_d=r_d\sin {(0.4\pi t)}+3,~z_d=\sin {(0.4\pi t)}+2\end {align}


$r_d=5m$


$\mathcal {O}_d$


$\nu _i, i=1,2,\ldots ,6$


$\theta _0=60^{\circ }$


$r_\nu =2m$


$||e_\eta ||_2$


$2$


$\infty $


$L_1$


$L_2$


$0.722\ kg$


$250~\mathrm {mm}$


$3\ {m/s}$


$2g\approx 19.6~\mathrm {m/s^2}$


$200\ {Hz}$


$1$


$\mathcal {A}_{p1}$


$\mathcal {D}_{p1}$


$\mathcal {B}_{p1}$


$\mathcal {L}_{p1}$


\begin {align}\mathcal {A}_{p1}=\begin {bmatrix} 0&1&1&1\\ 1&0&0&0\\ 1&0&0&0\\ 1&0&0&0 \end {bmatrix},~ \mathcal {D}_{p1}=\begin {bmatrix} 3&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1 \end {bmatrix},~ \mathcal {B}_{p1}=\begin {bmatrix} 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end {bmatrix},\end {align}


$\mathcal {L}_{p1}=\mathcal {D}_{p1}-\mathcal {B}_{p1}$


$\mathcal {O}_d=\bracketsM {0, 0.2, 1.5}^\top $


$\mathcal {O}_d$


$\nu _i, i=1,2,3,4$


$||e_\eta ||_2$


$2$


$k_{\eta 1}$


$k_{\eta 2}$


$k_{\eta 4}$


$1$


$x$


$y$


$z$


$0$


$2$


$e_\eta $


$\dot {e}_\eta $


$1$


$x$


$y$


$z$


$k_{\eta 1}$


$k_{\eta 2}$


$k_{\eta 4}$


$5{ms}$


$2$


$\mathcal {A}_{p2}$


$\mathcal {D}_{p2}$


$\mathcal {B}_{p2}$


$\mathcal {L}_{p2}$


\begin {align}\mathcal {A}_{p2}=\begin {bmatrix} 0&1&0&1\\ 1&0&1&0\\ 0&1&0&0\\ 1&0&0&0 \end {bmatrix},~ \mathcal {D}_{p2}=\begin {bmatrix} 2&0&0&0\\ 0&2&0&0\\ 0&0&1&0\\ 0&0&0&1 \end {bmatrix},~ \mathcal {D}_{p2}=\begin {bmatrix} 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end {bmatrix},\end {align}


$\mathcal {L}_{p2}=\mathcal {D}_{p2}-\mathcal {B}_{p2}$


$\mathcal {O}_d$


\begin {align}x_d = \cos {(0.4\pi t)}, ~y_d = \sin {(0.8\pi t)} + 0.2, ~z_d = 1.5.\end {align}


$\mathcal {O}_d$


$\nu _i, i=1,2,3,4$


$2$


$||e_\eta ,i||_2$


$k_{\eta 1}$


$k_{\eta 2}$


$k_{\eta 4}$


$2$


$x$


$y$


$z$


$2$


$1$


$L_2$


$L_1$


$2$
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tionality by integrating a robotic manipulator with an adaptive pre-
scribed performance controller, and Ijaz et al. [21] proposed an
integral SMC scheme with fault estimation for quadrotor systems.
Although these methods have advanced the autonomous control of
quadrotor formations, they still exhibit limitations in time-critical mis-
sions. Specifically, many approaches suffer from slow response, weak ro-
bustness, and strong dependence on accurate models in strongly coupled
nonlinear systems. Moreover, conventional finite-time control strategies
may not guarantee sufficiently fast convergence when quadrotor trajec-
tories are explicitly time-parameterized, as is typical in practical plan-
ning modules.

To address the consensus control problem, various fixed-time con-
trol algorithms have been proposed. Zhao et al. [22] developed a fixed-
time event-triggered SMC for multi-agent systems with unknown dy-
namics. Miao et al. [23] designed a fixed-time fault-tolerant controller
for multi-quadrotor systems, while Su et al. [24] proposed a fixed-time
formation-containment scheme. However, these methods typically as-
sume that both the disturbances and their derivatives are bounded, an
assumption that is often unrealistic in practice. In real-world operations,
disturbances such as wind gusts or sudden changes in quadrotor mass
may vary abruptly, making it essential to design controllers that guaran-
tee fixed-time convergence while remaining robust against such uncer-
tainties. Fixed-time sliding mode control with disturbance observers can
ensure convergence, but selecting appropriate control gains remains a
critical challenge. Insufficient gains may lead to slow convergence and
poor disturbance rejection, whereas overly large gains can cause aggres-
sive responses, instability, or even divergence. Consequently, it is highly
desirable to develop adaptive, time-varying gain mechanisms that can
balance convergence speed and robustness under diverse operating con-
ditions.

Numerous adaptive sliding mode methods have been proposed to
address the problem of gain tuning. For instance, Rodriguez et al. [25]
developed an adaptive mechanism based on chattering detection. How-
ever, this approach adjusts the control gain only after chattering occurs,
which is inadequate for quadrotor applications requiring strict real-time
performance. Smith et al. introduced an adaptive tuning law where the
adaptation rate was proportional to the error magnitude, but the op-
timality of such proportional adaptation remains unverified. Beyond
classical adaptive methods, artificial intelligence (AI)-based approaches
have been increasingly explored to enhance control performance. Deep
reinforcement learning (DRL) is particularly attractive due to its inde-
pendence from precise system models, adaptability, and powerful non-
linear approximation capability. Yan et al. [26] integrated DRL with
SMC for multi-agent systems with time delays, while Wang et al. [27]
investigated a data-driven framework combining SMC, DRL, and event-
triggered control for unknown nonlinear systems. Similarly, Wang et
al. [28] proposed a DRL-based SMC scheme for decentralized event-
triggered control. Although DRL enhances adaptivity, it also introduces
theoretical challenges that may undermine stability. Alternative learn-
ing paradigms such as Adaptive Dynamic Programming (ADP) have also
been applied [29,30], but these often degrade fixed-time stability to
uniformly ultimately bounded (UUB) stability, which is insufficient for
time-critical applications. Therefore, it is crucial to develop a system-
atic adaptive gain tuning strategy that not only leverages learning-based
adaptability but also guarantees rigorous theoretical stability, thereby
bridging the gap between advanced control theory and practical quadro-
tor applications.

To address the challenges discussed above, this paper proposes a
DRL-based fast nonsingular terminal sliding mode control (FNTSMC)
framework. Specifically, a FNTSMC approach integrated with a fixed-
time disturbance observer (FTDO) is developed to achieve fixed-time
robust control for multi-quadrotor systems, with the FTDO serving
as a model compensation strategy for formation control. Building on
this, a hybrid scheme combining DRL with fixed-time SMC is intro-
duced, which guarantees fixed-time convergence while enabling adap-
tive tuning and optimization of control parameters. Compared with
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prior studies, the main contributions of this work are summarized as
follows:

1) A fully distributed FNTSMC is developed to address the consensus
control problem in multi-quadrotor systems, with rigorous fixed-
time stability guaranteed in the Lyapunov sense. Unlike the meth-
ods in [18-21], which only ensure finite-time stability, the proposed
FNTSMC achieves fixed-time formation maintenance, offering faster
and more predictable convergence.

2) A fixed-time disturbance observer (FTDO) is developed to estimate
unknown external disturbances, with the estimation error guaran-
teed to converge to a small neighborhood of the origin within a fixed
time. In contrast to the observers in [22-24], the proposed FTDO re-
moves the restrictive assumption that disturbances must vary slowly
with near-zero time derivatives, enabling more robust performance
under abrupt disturbances.
Unlike the methods in [27-30], the proposed framework employs
DRL to optimize FNTSMCs rather than directly replacing the con-
troller with a neural network. This hybrid approach preserves fixed-
time stability while significantly enhancing the robustness and flight
performance of the quadrotor formation. The effectiveness and su-
periority of the proposed control framework are further validated
through extensive simulations and real-world experiments.

3

=

The remainder of the paper is organized as follows: Section 2 in-
troduces some preliminaries and outlines the problem addressed in this
study. The controller design is presented in Section 3. In Section 4, a re-
inforcement learning-based parameter optimization framework is intro-
duced to further improve the hyperparameters of the FNTSMCs. Simu-
lations and experiments are conducted in Sections 5 and 6, respectively.
Finally, Section 7 concludes the paper.

Notations: Given the extensive use of abbreviations and mathemat-
ical notations in this paper, we provide a comprehensive list of their
definitions in Appendix A to enhance the clarity and reproducibility of
our findings.

2. Preliminaries and problem formulation
2.1. Fundamental mathematics

The quadrotor group, consisting of N quadrotors, can be modeled
as a graph ¢ = (V, &), where V = {v,,v,,..., vy} represents the set of
nodes, with v; denoting the ith quadrotor, and € = {(v;,v;)} denotes the
set of edges, with (v;, v;) indicating that information can be transmitted
from v; to v;. The neighbor set of v; is defined as NV; = {v; | (v}, v;) € €).
The adjacency matrix is denoted by A = [g;;] € R¥*N, where q,; = 1 if
(v;,v;) € € and a;; = 0 otherwise. The graph is undirected if a;; = a;
for all i,j, and directed if there exists at least one pair (i, j) such
that a;; # a;;. The in-degree matrix is defined as D = diag(d,. d,. ..., dy)
with d; = Zj\’: 1 a;;» and the Laplacian matrix is given by £ =D - A.
For leader-follower control, the leader adjacency matrix is defined as
B = diag(b;, by, ..., by), where b; = 1 if v; receives information from the
leader and b; = 0 otherwise. The augmented graph including the leader
node v, is denoted by Gz = (V, &, vy, {b;}). Without loss of generality, the
following assumptions are made. Moreover, for clarity and convenience,
several useful lemmas and definitions are provided below.

Assumption 1. [31] For the graph theory used in the study, the follow-
ing standard conditions are required: (1) The graph G is undirected. (2)
There are no self-loops in the graph ¢. Namely, a; =0,i =1,2,...,N.
(3) There exists at least one spanning tree with the leader node v, as the
root of graph Gg.

Assumption 2. [32] The disturbances § i acted on the N quadro-

pii’
tors are bounded by unknown positive constants, namely, ||5,;|| < § and

116,11 < 5, where 5 is the unknown upper bound of the disturbances.
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Assumption 3. [33] The yaw angle is bounded as y; € [-x, z]. To avoid

singularities, the pitch and roll angles are bounded as ¢,,6, € ( - ’2—’ %)

Lemma 1. [34] For an undirected graph, the matrix H = L + B is sym-
metrical and positive definite if the graph G is connected and at least one
follower can receive the leader’s information.

Lemma 2. [35] For system x = f(x) € R". If there exists a continuous
radially unbounded function V : R" — R {0} for the system such that V <
—[a, V™ + an(x)’"Z]k for some a; >0, ay >0, m; >0, my >0, k>0,
km; < 1, and km, > 1. Then the system islsaid to be fixed-time stable and

the settling time T < T,, =

a’l‘(l—kml) a’z‘(kmz—l).

Lemma 3. [36]Vx;€R, i=1,2,...,n,0<p< 1, thereis (X, |x;])” <
i lal” <t (XL )

Definition 1. [37] For system x = f(x), f(0) = 0, where f : D - R" is
continuous on an open neighborhood D C R" of the origin and f(0) = 0.
The origin is said to be a finite-time-stable equilibrium of the system if
there exists an open neighborhood N C D of the origin and a function
T : N\{0} — (0, o), called the settling-time function, such that the fol-
lowing statements hold:

(1) Finite-time convergence: For every x € M\{0}, v~ is defined on
[0, T(x)), w*(t) € N'\{0} for all t € [0, T(x)), and Limy 7 w*(@) = 0.

(2) Lyapunov stability: For every open neighborhood U, of 0 there exists
an open subset U of M containing 0 such that, for every x € U;\{0},
wX(t) € UL, V1 € [0, T(x)).

The origin is said to be a globally finite-time-stable equilibrium if it is a
finite-time stable equilibrium with D = N' = R".

Definition 2. [35] For system x = f(x), f(0) = 0, x, = x(0), where f :
D — R"is continuous on an open neighborhood D C R" of the origin and
f(0) = 0. The system is said to be fixed-time stable if it is globally finite-
time stable and the function T'(x) is bounded, i.e., 3T}, > 0 : T(x() <
T Vo € R

2.2. System description

The dynamics of the ith quadrotor can be described as

upi ko Op.i

= —1" A(p)—g— . ,
g m; + Am; P -8 m;+Am; " m;+ Am,

o; = I [—kw;, — 0; X (Jjo) + 8, + 7],
P = VV;(/),—)(D‘-, @

where 7;, u 1o Kis and m; respectively represent the position, throttle,
drag coefficient of the translational loop, and mass of the i-th quadro-
tor, Am; is the mass uncertainty, g = [0,0, g]" is the gravitational ac-
celeration; w;, J, k,, and 7; respectively denote the angular rate, in-
ertia tensor matrix, drag coefficient of the rotational loop, and torque

of the i-th quadrotor; A; £ A,(p;) = [C,,;C,, i So; + S0 Sy.i» CpiSy iSes —
. 1 S(p,iTB,i C(p,iTG,i

8,iCpi»CoiCpilT and W, 2 Wi(p)=|0 C,i =S, | 8,
0 Sq),i/CO,i C(p,i/CG,i

and §,; respectively denote the disturbances acting on the translational
and rotational subsystems of the ith quadrotor. C), S, and T;,, denote
the cosine, sine, and tangent functions, respectively.

2.2.1. Rotational subsystem
The tracking error e,; and the Ist and 2nd order derivatives of e,
are given by

€,i =P~ Pais €pi =Wio; —py;, €, = Vi/iwi + Wi — By (2)
where p,;; = [qbd’l-,ed’i,y/d'[]T is the reference attitude angle, and W; =
- B,Sw . glc(ﬂi
0 ¢T5Cp + = —0:iS,, Ty, + =
0 0;
0 S, -¢,C,, . By defining A,; =J7'5,;

0
#iCo; Co; +6: S, So;
;) 7

Coi Coi

=915, S0, +0iCo; o,

0
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—Bais [oi =—J,-71[kr60,- +o; X (J;o)), A,; = Ww; + Wit Byi= I/ViJ,-il
and doing some manipulations, Eq. 2 can be finally simplified as

é,i=A,itB, it +4,,. 3)

Remark 1. Note that the second-order derivative of p,; is known for
pure attitude control. However, in the case of position control, the de-
sired attitude commands are generated by the translational subsystem.
As aresult, j,; is absorbed into A, ; and treated as part of the unknown
disturbances.

2.2.2. Translational subsystem
The virtual expected acceleration of the ith quadrotor can be defined

as
T

Uy i = [ax,i’ay,baz,i] > @
yielding
; ki
iy =——+uy; + 4, 5)

m;

_ M e ke K ni ;

where A, ; = poareyo Ai(p)—8 i Mt it o~y s the

equivalent disturbance. Thereafter, it can be easily derived that

. mila;S,; —a,;C,l
up;=m \/af”. + aii +(a,; +2)%, @4; = arcsin 0 ,
S

a,;Cyi+ ay,,-Su,’,-. ©)

0,,; = arctan
az,i + g
The consensus tracking error of the ith quadrotor can be defined as

N

eni = Z a;; [(’7,‘ -v) = - Vj)] +b;(n; — g — V), @)
Jj=1

where 7, is the reference trajectory of the geometric centre of the

quadrotor formation and v, is the offset of the ith quadrotor to the geo-

metric centre. Correspondingly, there is

N
Cpi = D a0 = V) = (efa; — ru))] + b iy = iy = V), ®
j=1

For ease of theoretical derivation, a new variable can be defined as
N
A =bing +(b; +dy)v; + Zj=1 a;;(nj — v)). 9
Correspondingly, one obtains
A, =biy + (b, + d,)v,; + ijl a (i = v, Ry = byiiy + (b + dpy;
N
+ X il = ). 10)
Further, substituting ij; into A; and doing some manipulations yield
A = bifig + (b; + dp)Vi + Z/:] ay; (it; = ;)
. . N kj .
= biijy + (b; + d;)V; + zj:l a;; <_F”j tu,;+4,; - vj>
J
N
=Ap+ Z,-=1 ajh, . an

where
. - N kij . .
Ajo = biijg + (b; + d;)V; + 2/’:1 aij(—m—r/j +u,;—V;)
J

is a known variable. The i, and V; in ‘4,)’ are manually defined and
the u, ; and v; have to be accessed from other quadrotors. However,
these two items are controlled by the a;;. Specifically, as defined and
described in the Laplacian matrix, a;; = 0 means these messages cannot
be transmitted from the jth quadrotor to the ith quadrotor; otherwise,
a;; = 1. Then, the error dynamics of the translational loop can be given
by

N
j=1

. (d; + bk,
6 = ——

n.i al-jA

n.J*
12)

By (b + g, = N+ (b + d)A, =

i
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Table 1
Some variables used in controller design.
Variable  Definition Variable  Definition
my s ° constants in rotational observer design  z, estimation of e,
Zp estimation of ¢, iz’ positive constants
Z,3 estimation of A, [ positive constants
P constants in rotatinoal controllers Kprmps © rotational loop control gains
Zy estimation of e, My constants in translational observer design
Zp estimation of ¢, [ constants in translational observer design
Z,3 estimation of A, Kyinns translational loop control gains
q16 constants in translational controllers

a Subscript ‘i’ in this section represents the index of the quadrotor.

2.3. Problem formulation

Based on the Assumption. 1-3, the control objective of this paper is
formulated as follows:

Control Objective: Given a quadrotor group of N quadrotors subject
to airflow disturbances generated by fans and additional suspended pay-
loads with uncertain mass, we assume the topological graph ¢ satisfies
the conditions in Assumption. 1. For a set of reference trajectories gen-
erated by the virtual leader node with #,; = [x,, y,, zd]T being the refer-
ence position, y, being the reference yaw angle, and v, = [v, ;, v, ;,v,;17
denoting the offset of the ith quadrotor from #,, we design an adaptive
controller such that fori =1,2,...,N

lim [;1,.(7) — (nd + vi)] =0, lim [y/i(t) - u/d] =0, (13)
=T, ~T,

with T, and T, being the settling time of the translational and rotational
subsystems, respectively.

Remark 2. Note that 7, and v; can be either constants or time-varying
variables, which implies that the UAV formation may either maintain a
fixed configuration or undergo a change in formation. The uncertainties
considered in the experiments of this work are classified into two types:
(i) the mass uncertainty of the UAVs, and (ii) the wind disturbances
generated by the fan. The control framework designed in this work the-
oretically guarantees that the consensus tracking error converges to zero
within a fixed time.

3. Controller design

This section provides a consensus controller design for the quadrotor
formation. Before starting this section, we first provide Table 1 of some
important mathematical symbols and their definitions in this section for
easy reference.

3.1. Rotational subsystem stability

For simplicity, the subscript ‘/’ in the rotational loop controller de-
sign is omitted since the quadrotors are all homogeneous and the design
of the FTDO and FNTSMC in the rotational loop does not require the in-
formation from other quadrotors [38].

To begin with, an FTDO can be designed as

2 = Rmy [2,] + (1 =R)m,|2,]" + 2,5,
zﬂZ = Npmpz lép]az + (1 - Np)mpz [ép]ﬁz + 253 + Ap + BpT,
3= Ryms[e,]™ + (1 =R )m,se,]”, 14)

where z 15 Zp2s and z 3 are the estimations of €y €, and A s respectively,
é,; = e, — z, is the estimation error of e,. N, is a switching parameter;
ay, &y, a3, By, Py, and p; are positive constants. Specifically, a; = %, a =

2 1 5 6 7 S .
pa=ph=0h=70k= Z,ande:Olfllel,llz >e; else1w1the;

being the threshold of the estimation error. Apart from that, parameters

-m, 1 0
m,, my, and m,; are designed such that matrix I, , =|-m, 0 1
-m,; 00

is Hurwitz.

With observer (14) and Lemma. 2, A, can be estimated in a fixed-
time 7,,;, and the estimation error converges to a neighborhood of the
origin Q. Due to space limitations, the detailed stability analysis is omit-
ted here. Interested readers are referred to Theorem 1 in [39] and The-
orem 1 in [40] for a comprehensive proof.

Remark 3. Observer (14) is a second-order FTDO. z,,, z,, and z 3 are
utilized to estimate the e, ¢,, and A , respectively. The key principle of
this observer lies in estimating the A, by using the ¢, the observation
error of e,;. Theoretically, as ||¢,||, decreases, z,;, z,,, and z,; would
gradually converge to the real values of ¢, ¢,, and A ,, respectively. The
higher the order of the observer, the longer it takes for the observation
error to propagate to the highest derivative. To satisfy the requirements
ona,_; and ;3 in observer [39], for a P-order observer, the values of «;

to ap need to be designed as PL;I, ﬁ—;i, e PLH accordingly. Similarly, g,
to fp should be set as i—:?, ﬁ—ﬁ, e 2:’]1 . In this study, P = 3. Therefore,

3 2 1 5 6 7 .
o =3,0=50=7yp%=3 =7 = Asfortheselection of X,

it is a threshold for switching the observer. Empirically, the value of R,
can be designed to be slightly less than 0.5 in practical applications. This
choice ensures system stability while enhancing the observer’s sensitiv-
ity to large errors, thereby enabling faster convergence.

Remark 4. Although the stability of the observer can be ensured by
guaranteeing the stability of the matrix I',, ,, in practical applications it
is often challenging to determine whether a third-order matrix is Hur-
witz simply by inspecting its parameters. Therefore, we utilize a method

that integrates linear system theory to explicitly compute m,;, m, and
m,3. Solving |Al; — T, ,| = 0 yields
PBamy 2 —mydtmy=0. (15)

Simultaneously, assuming three negative real roots of a third-order lin-
ear equation are —w,, —w,, and —w; with @, w,,w; > 0. Then, we have

B+ mplﬂz —mpd+m;

=(A+ o)A+ 0,)(4 + @3)

=23+ (0 + @y + ©3)A% + (00, + 003 + ©03) A + D@05 = 0 (16)
which yields
my, =w| +w, +w3, My =00, +0,03 + 003, M3 =00,05. (17)

Therefore, we can compute m,;, m,,, and m,; by selecting appropriate
y, w,, and w;.

Larger values of w; (i = 1,2, 3) indicate that the observer has a higher
bandwidth, which implies faster convergence. However, prior to conver-
gence, the observer output may exhibit large magnitudes and height-
ened sensitivity to noise. Conversely, smaller values of w; correspond to
lower bandwidth, suggesting that the observer produces less overshoot
and is less sensitive to noise, but at the cost of slower convergence. In
practical applications, it is essential to strike a balance between conver-
gence speed and overshoot based on specific requirements. In numerical
simulations, where conditions are relatively idealized, the values of w;,
(i = 1,2,3) can be set around 4 to increase the observer bandwidth and
shorten convergence time. However, in practical implementations, the
system control frequency typically ranges from 50 Hz to 200 Hz. Under
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such conditions, an excessively large observer bandwidth may lead to
divergence.

Thereafter, a sliding mode surface is defined as

Jan 3
=e,+ ke"2 + ke:;, (18)

where p/ >0, p2 > 0. p;, p,, p3, and p, are all positive odd numbers sat-
isfying * o > 2 5 5 1and?2 >4 % > 1. Assuming there are no disturbances

or uncertam terms in the system an equivalent control law can be given
by

2-B k,py Z-1
S L AL § L I 19
ky1p3 b3

By Wang et al. [41], it can be easily verified that the control matrix B,
is of full rank and invertible.

In addition, a switching control law is further required to maintain s,,
at the origin when there exist disturbances or uncertainty in the system,
which is given by

ps
Ty = —B;l [zp3+kp3 sgn(sp)+kr‘,4s:°], (20)

where k3 > 0, k,4 > 0 are positive constants. ps > p, > 1 are all positive
odd parameters. Then, the complete control law for the rotational loop
can be designed as

T = Toq + Ty (G2

Based on the analysis and derivation aforementioned, the following the-
orem can be concluded.

Theorem 1. For the rotational subsystem of the quadrotor (3) disturbed
by A,, the system is fixed-time stable with the FNTSMC (21) and the
FTDO (14).

Proof. Firstly, we need to prove that the sliding mode surface converges
to the origin in a fixed time.

Choose a Lyapunov function candidate as V,; = % s, Differentiat-
ing V,,; yields

. k1P %1“ kyp3 %3“
Vo =S; é,+ p—ep2 4:>é"+p—ép4 O[Ap+Bﬂ(req+wa)+Aﬂ] (22)
2 4

Substituting controller (21) into V,; and doing some manipulations
yield

kppy 2-1 25
; nP3
vV, :s; Te:" o<A’,—zp3—kp3sgn(sﬂ)—kp4s;€’> . (23)
o B
Denote A, = A, — z,3 as the estimation error of A, and k ,, = %’“e‘f ,
which yields
b5 l’5+”6

. T T -
Vo1 =~k o5, <k,,3 sgn(s,) + kpys,0 — A,,) =—k 4kﬂ0 o

— kysk ols,] 24)

where k5 = k3 — [|14,]], > 0.
Note the fact that all elements in k ,, are non-negative. Demoting the
minimum element in k ,, as k, and using Lemma. 3 yield

Pstpe

. 206
Vpl < _kp4kpllsp||2 ’

Ps+pe pstpe

— kpyk,2 2 v, 26

—kyskplls, I|

—kﬂskﬂ\/EV/E. (25)
Using Lemma. 2 and the fact ps > py yield that
and the settling time 7, is bounded by

V2 Ds 285

+ 2P57P6 (26)
kyuk,(ps — ps)

s, is fixed-time stable,

T,<
p2 =
kysk,
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Secondly, we need to prove that e, converges to the origin in a fixed

time when the states are maintained on the sliding mode surface.
I ”

On the sliding mode surface, we have e, + k,e,> +k,é,* =0, yield-

3 ”1

ing ¢)* = ——(e,+k, ey’ ). Choose a Lyapunov function candidate as

Tk

1,
sz =3 p €p-
Eq. (3) yield

Differentiating V,, along the system trajectory and using

pA
. 1 - P3 L% 3
Vo=-— —(e ),,4 e, +kyer
2 _kp2 P P pL=p

_ 2

p3tr4 k PL P33 py
1 1 +—= 3
S _ P4 14 ” P2 P4

—lle,ll +—lle
e 02 K

P4

P3tpy 1(&1_,_",3) 7
2\p  py
s

=- Kﬂlvpzzm +r0V, 27

\/2<03+P4)/04 K,y V2P1/p2tp3/e

Ky
By Lemma 2, one concludes e, converges to the origin in a fixed time,

and the settling time 7; can be bounded by

where k,; = and k, =

2 2,
T P3 P2D3

= +
3 (93 — s )KP4/P3

(28)

(P1P4 P2P3) pafps
Therefore, the convergence time of the system with external disturbance
converges within 7, < 7, + 7, + 7 3. The proof is completed. [

Remark 5. In this study, the term non-singular refers to the issue where
the denominator appearing in the first derivative of the sliding surface
variable becomes zero, leading to an undefined system. For example, a
sliding mode surface s = x + ¢x?, ¢ > 0, 0 < p < 1. Differentiating s gives
§ = % + cpxP~'x. By observing § we find the singularity probelm occurs
when x = 0 because p — 1 < 0. However, in matrix theory, the term sin-
gular refers to a square matrix that is non-invertible. When certain matri-
ces are invertible but have large condition numbers, they are considered
nearly singular and exhibit poor numerical stability. Such matrices are
referred to as ill-conditioned. Therefore, in the context of this study and
its research domain, the term non-singular refers to the first definition.

Remark 6. In Eq. ((18)), it is obvious to conclude that ’% . 2—4 =
4 3

P € (0,1 and $( 2+ 2). 2 = L( 82 4 1) > 1 hold for 2 > 2 >
2p3 2\p;p m P3 2\ pap3 )23 P4

1, satisfying the conditions required in Lemma 2.
3.2. Translational subsystem stability

Similarly, the fixed-time disturbance observer can be designed as
. ~ a
2o = Nymy 8] + =R
~ a
Zr[Z,i = Nn,ing,i [enlﬁi-l

, _ s
230 = Ryimya | 814] " + =Ry mys (8,17 (29

where z

~ b
i My [eql,[] + Zpi»

~ P ki
+ (1 - Nn,i)ng,i [enl,i] : + Zr]3,i - ;r’i + Upis
i

and z,;; are the estimates of e, ;,¢,;,and A, ;,respec-
tively, &, ; z,1, is the estimate error of e, ;. N, ; is a switching
parameter and X, ; = 0 if [|¢,; ]|, > e;’i else 1 with e;i being the thresh-

old of the estimation error. Moreover, hyper-parameters m and

nl,is ZnZ,i’
=i~

nl.is mn2,i )
1 0
0 1|is Hurwitz.
-myz; 00

Similarly, A, ; can be estimated in fixed-time 7, ;, and the estimation
error converges to a neighborhood of the origin Q, ; [39].

Thereafter, a sliding mode surface for the ith quadrotor can be de-
fined as

——
nl,i
m,3; are designed such that matrix I, , ; = | —m,; ;

41 ‘L3
Spi=epitk 2tk

1,0 n1i€ Y]I n2.i€ 111’ (30
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where k,;; >0, k,5; > 0. gy, qz, q3, and ¢, are all positive odd numbers

satisfying Z—‘ Z3 >land2> 2 o> 1. An equivalent control law is then
2 4

proposed to maintain s, ;

a3
1 (b: + di)kt.i qy z_q
=- - 1 — Mg + g, ol I
Upieq b, +d, [ m ;i i0 qSk»ﬂJ n; o\ 3=

on the sliding mode surface, which is given by

thkr,l: q;_l
5] T ’

(1)

To handle uncertainties and external disturbances in the translational
subsystem, a switching control law is required, which is designed as

N a5

1 as

Ypisw =~ 30 [(bi +d;) 2,5, + Z @3j2y3,j + ko 80 (8y0) = Kyais, ] ,
i i=1

(32)

where k,3; and k,,; are positive gains. g5 > g, > 1 are all positive odd
parameters. Finally, the complete control law is given by

n,i,sw* (33)

Similar to that of the rotational subsystem, the following theorem guar-
antees the stability of the translational subsystem of the entire quadrotor

group.

Uy =UyjoqtU

Theorem 2. For the consensus tracking error of the translational subsys-
tems of the quadrotor formation (12) disturbed by A, the system is fixed-time
stable with FNTSMC (33) and FTDO (29).

Proof. Firstly, we need to prove Spi> i=12,...,N converge to the
origin in fixed time. Choose a Lyapunov function candidate as V,; =

= Z L smsn, Differentiating V,; yields
N il z
qikyi -l a3k ol
T nl.i R 73 1 ..
V= st.<e,,, + - e:ﬁ. ¢, + - ,7, 0é,; |- (34)
i=1

Substituting Eq. (12) into V, s using controller (33), and doing some
manipulations yield

N
. Gk -
T, n 2 .
Vi = 2 Sy {e,l_,v + e”'j ¢, ;
i=1 %@
L Wk 2ot Gt ddky <
Bl e (b; +duy; = Ao+ (b +dDA, = Y ayA,
4 i J=i
N ask 7 N
3K ot
=Y s { én {(b +d) (A = 20 + D ay (20, = Ay ]} (35)
i=1 J=i
Define the estimatation error of A, ; as A, ;= A, ; -z, and k,; =
a
L
@k ; S
Lo2ig4  p can be simplified as
qg M n
qS N

qum T:{[ "3,S‘g,n(s )+k”4, n!

Note the fact that all elements in k

- (b +d)A,; —Za,/AW]}. (36)

J=i

are non-negative. Using Eq. (3)

10,i
and denoting the minimum element in k,; as k,; yield
N 115 N
I/nl S_an,is:;’i{[k;1315gn(sr,1)+k;141 (b +d Z l/ ’7/]}
i=1 =i
N a5
== 2 kﬂ,is;r,,' |:kl13t sgn (Sr, :) + k)14[ ,;l(; ] =
i=1
N 3 3 145
= X na s 2 [snas] + Kaas 2 Jsnas] ] (37)
i=1 j=1 j=1

1 %(14—%)]

Kool 1904115+ Kl 1

3
2 |sr],i,j‘ - ]—€n4

j=1 i

IA
|
M=

"5

3 1+
2 sns]

Jj=1

/\
Mz

Aerospace Science and Technology 168 (2026) 111133

where ks —(b; +

,N. Using Lemma 3

= min (ky, kya, )y K,y = min (k. kg, and K, ; =
dDIIB, 1l = XLy alld, 11, >0 for i=1,2,...
again in Eq. 37 yields

r]31

N 1

Vot <=k 2 (11s,4113)

i=1

N i)
Z (Hsyl13) 2% "
1

<Z|lw,|l2> _,_€n4<ﬁ;”%“§>§(l+‘qig)

1 1 a5
_ VE _ VZ(lJr(lf,)
7y n2

where k,; =k, V2 and Kp =k, V 2(46+46)/9. Using Lemma 2 yields that
syii=1,2,..., N are fixed-time stable, and the settling time 7,2 can be
2
bounded by 7, < :7 + m.
Secondly, similar to that of the rotational subsystem, we need
to prove that the tracking errors of the quadrotor group converge
to the origin in a fixed time. On the sliding mode surface, there is

‘I[ q} ‘1‘5 ql
1
- k .
kya.i it ke »1!

+k,72, ' =0, yielding ¢ ¢ =
A Lyapunov function candidate can be defined as V), = Z,]i . e;iew.
Differentiating V,, yields

) N 1 a3 pl %
Vnz:_z % (e;.i)q4 it kiey”
i=1 n2,i
a
2 %(Hﬂ) ki 2 %(qi+"—‘) o
——Z (e 113) 2475 + 2= (lley l13) =/ 2 (39)
2, n2i

Using Lemma 3 y1elds

) (38)

K -:e,“-+k

i '7“ ;11

a4

] N (1.5 k 14, a1 a3
Vnzs—{Z T )75 4 22 ey 1 >2<q4+qz>]}

—1 n2,i

| N %(HZ%)
- _—(2||e,,,,-||§> +
kyp \i=1

a4

1{93 , 91 s
el E(HJrE) "
K, R
== Heyli3
2 \i=1

ay

Li+% 4| e
— [ r,lV;( +K2V (114 qz) , (40)
here , kyy ik k - R k=
where k,, = max(k, ki kN Ky = / s k=
3,4
min (k15 ko js -5 Ky i)y @nd K, = k, 2(244 7qz)/k 5. Using Lemma 2

indicates that e, i=12,....N converge to the origin in a fixed-time
T,3, which can be bounded by

73
2¢; 2q,43

T”S < a4/93 alaz’ (41
(@3 = qu)x, | (0194 — 12493)K}5

Therefore, the translational subsystem of the quadrotor group is fixed-
time stable, and the settling time can be bounded by 7, < 7,y + T;p + 7;3.
The proof is completed. O

Remark 7. The topological graph used in this study is time-invariant
and undirected. In practical scenarios, however, directed and time-
varying graphs are required, for example, when the information trans-
mission rate is limited. The works proposed in [42,43] provide strong
theoretical support for extending from undirected, time-invariant graphs
to directed, switching graphs. The results in [42,43] ensure that the for-
mation system remains stable under directed and time-varying topolo-
gies. Nevertheless, changes in the topological graph do not affect the
DRL component in this paper, because DRL-based parameter optimiza-
tion is independent of the traditional control framework. Regardless of
the specific control method, the control gains can be adaptively tuned
in real time by DRL, provided that the underlying control scheme guar-
antees system stability.
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Fig. 1. Architecture of the actor and the critic networks.

Table 2

Some related parameters of the PPO optimizer.
Symbol  Value Symbol  Value  Symbol  Value Symbol  Value
T, 10 dr 0.01 std, 0.45 std,y, 0.2
std, 0.05 stdyy 250 y 0.99 K,, 10
b T, /dt 2 a, 1074 . 1073 Con 0.01
! 0.95 Coin 0.8 Comax 1.2 N, 1000

4. DRL for parameter optimization

In Section 3, a consensus control protocol is designed for the quadro-
tor formation. However, tuning the hyperparameters remains a critical
issue that needs to be addressed. In this section, DRL is utilized as a
hyperparameter optimizer for FNTSMCs to achieve improved control
performance. The basic DRL algorithm employed in this study is Proxi-
mal Policy Optimization (PPO) with Generalized Advantage Estimation
(GAE) [44]. PPO is designed to ensure monotonic improvement in the
value function throughout the policy learning process, thereby enhanc-
ing learning robustness. This property is a key reason why PPO has be-
come widely adopted in control-oriented learning tasks. Table 2 sum-
marizes the relevant parameters of PPO with GAE used in this work.

Algorithm 1 PPO with GAE.

r is the immediate reward

Require: e, =0, N,, critic net C(), actor net .A().
1: whilee, < N, do
2: Collect data buffer B.

3 Vgae:()’Vadv:[],Alg:[]

4: for each b € B do

5: b= (s,a,a,r,s done, success), v=C(s),v =C(s),
& =r+y(l — success)v' — v.

6: Vage =0+ 7 AVqe(1 —done), V,q,.add(Vy,,), Ajg.add(ay,)

7: end for

8: Calculate the target value function: V,,. = V,,, + v.

9: Calculate the distribution of actor N, the entropy of the distri-

bution W, and the
10: Calculate the log-probability of the distribution NV,.

11: N, = eNiem e,

12: Calculate the surrogate objective: s; = N, * V, ., 55 = Vg, *
[N,,-elip(Cmin> Cmax)]-
13: Calculate loss function for A(): £, = —min(s;,s,) — ¢,, * N,,.

14: Update actor net weights A().learn().

15: Calculate loss function for C(): £, = %(er -V
16: Update critic net weights C().learn().

17: e,+ = 1.

18: end while

19: return A()

The parameter tuning of the DRL-based optimizer is also crucial.
Compared to other DRL methods such as Soft Actor-Critic, Deep De-
terministic Policy Gradient, and Deep Q-Network, PPO is relatively less
sensitive to hyperparameter selection. This robustness to hyperparame-
ters is the main reason for choosing PPO as the training framework. Con-
sidering the limited computational capacity of the onboard computer
for online deployment, the neural network should be kept lightweight.
After extensive tuning and validation, it is recommended that the net-
work consist of 3 to 5 layers, with no more than 128 neurons per layer.
In addition to network size, the exploration standard deviation of the
policy is a critical parameter. To ensure sufficient exploration while
maintaining rapid convergence, the standard deviation is initialized
at stdy = 0.45 and gradually reduced by std,; = 0.05 every std,;y = 250
training episodes, with a minimum limit of szd,,;, = 0.2. For each train-
ing iteration, the data volume should include at least two complete sim-
ulation trajectories, each with a duration of 7,, = 10s and a sampling
period of df = 0.01s. Accordingly, the data buffer should store a mini-
mum of b, = T, /dr * 2 = 2000 samples. Other parameters largely follow
the guidelines proposed in [44].

In Table 2, aside from the parameters mentioned above, N,, denotes
the maximum number of learning episodes, y is the discount factor, K,,
represents the number of times the neural network (NN) gradients are
updated in a single learning iteration, and b, is the buffer size. The learn-
ing rates of the actor and critic networks are denoted by g, and ¢,
respectively. The parameters c,,, 4, ¢y, and ¢, are associated with
the GAE technique, as referenced in [44]. In addition, the maximum
training episodes are calculated as N,, = 1000 - % +1000. The
pseudocode for PPO with GAE is illustrated in Algori{hm 1. For more
details on the PPO algorithm, readers may refer to [45] and several
widely cited GitHub repositories’.

The architectures of the actor and critic networks are illustrated in
Fig. 1. The actor network is a five-layer fully connected neural network,
with input and output dimensions of 6 and 9, respectively. The input
represents the tracking error of the quadrotor, while the output corre-
sponds to the learned hyperparameters of the FNTSMC. Note that the
activation function of the actor network’s output layer is ReLU rather
than tanh, since the FNTSMC hyperparameters are required to be posi-
tive. The critic network has an input dimension of 15, which equals the
sum of the input and output dimensions of the actor network. Its out-
put is a scalar representing the state-action value function for the cur-
rent input, which serves as an indicator to evaluate the quality of the
selected hyperparameters. The learning-based control framework for a
single quadrotor is shown in Fig. 2. In this framework, the rotational
and translational loop controls are coupled through the desired roll and
pitch angles, denoted as ¢, and 6,. The FNTSMC hyperparameters for
both loops are optimized simultaneously yet independently by DRL.

! https://github.com/HKPolyU-UAV/ReinforcementLearningPlatform/tree/
main/algorithm
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Fig. 2. Diagram of the learning-based control framework.

4.1. Rotational subsystem parameter optimizer training

The controller for the rotational subsystem is utilized in Eq. (21) and
is tuned by k,; ;, k0,5 kp35 kpa;, and py to pg. First, to ensure the rapid
convergence of the training process, we select py =9, p, =7, p; =5,
ps =3, ps =7, and pg = 5. Second, to reduce the gap between numer-
ical simulations and real-world experiments, we opted not to rely solely
on the results learned by DRL. Specifically, the regulation of k,; ;, k5 ;,
and k,,; is assigned to DRL, while k;; is retained to further enhance
the robustness of the controller during real-world experiments.

The input and output of the rotational-subsystem optimizer are de-
fined as follows, respectively:

Xpi = [eT. éT.]T € R°, (42)

psi’ T pii
T 9
[kpl ix° pLLyv kpl,i,Z’ kp2,i,x’ kpZJ,y’ kpZ,i,z’ kp3,[,x’ kp3,i,y’ kp3.i,z] ER".
The reward function is defined as
(S
J, 0 == / . e-n@-”( 13 Cpidpi + 7" Rp,if)ds, 43)
1=l

where Q,,; = dlag(Q .06 ) with Q
and y, = 0.99 is the dlscount factor.

=1L, 0, =001, R, = 0.01L,

Remark 8. Note that the DRL training process can be regarded as
a mathematical approximation to solving an optimal control problem.
While DRL focuses on maximizing rewards, optimal control aims to min-
imize costs. To reconcile this discrepancy between reward maximization
and cost minimization, a negative sign is applied to the integral-form
cost function.

The reward curves during the training process are shown in Fig. 3,
where a multi-stage training technique [46] is employed to accelerate
the training process and enhance the robustness of the trained neural
network (NN). In the first training stage, the control performance ex-
hibits significant fluctuations, as the NNs have not yet fully converged.
In the subsequent three stages, the initial policies are set based on the re-
sults from the corresponding previous stage. Furthermore, lower learn-
ing rates are adopted for the NNs to reduce fluctuations and improve
the robustness of the learned optimizer.

Moreover, we collected the control costs of the rotational subsystem
under various initial conditions and control frameworks to preliminarily
demonstrate the superiority of the proposed control framework. During
the evaluation process, the reference angular commands are randomly
generated as p; = Asin(2zt/T), where A € [0, 7/3] is the amplitude of
the reference attitude and T € [3 s, 6 s] is the period of the reference sig-
nal. This is illustrated in Fig. 3, which shows that the proposed FNTSMC-
DRL-FTDO control framework outperforms controllers that do not in-
corporate DRL. Notably, pure FNTSMC (without FTDO or DRL) exhibits

Aerospace Science and Technology 168 (2026) 111133

significant fluctuations under strong external disturbances, further high-
lighting the robustness of the proposed control framework.

Remark 9. To expedite the training of the DRL-based optimizer, the
neural networks are initially trained in a single-agent interactive en-
vironment, leveraging the homogeneity of the quadrotors. The well-
trained NN-based optimizer is then integrated into the FNTSMC of each
quadrotor for extensive simulation validation and physical experiments,
enabling real-time tuning of the FNTSMC hyperparameters.

4.2. Translational subsystem parameter optimizer training

Similarly, wesetq, =9,¢9, =7,93 =5, 9, = 3,95 =7,and g5 = 5. and
ks, is retained out of the DRL-based optimization framework. The input
and output of the optimizer of the translational loop are respectively
defined as

.
i = [erT“., éli] € RS, (44)

9
[knllx’ nlly’knllz!krﬂlV’kr[ZIy’k;ﬂlz’kn31x’k1131y’ r[3lz] ER".

The reward function is defined as

o
Jﬂ,i(’)z_/o y”(s t)(){ruQﬂu(nlJru R’?lunl>dt (45)
where Q,; = diag(Q,, O, ) with Q, =1, Q;,, =015 and R,; =
0.0113, and y, = 0.99 is the discount factor

The curves for the reward during the training process are recorded
in Fig. 4. The trend of the reward curve is very similar to that of the
rotational subsystem. In Fig. 4, the red, blue, orange, and green curves
correspond to the four training stages of the attitude-loop controller,
with each stage building upon the outcome of the preceding one. Follow-
ing the approach in [46], partitioning the training into multiple stages
proves more effective for achieving robustness than applying a single
policy until convergence. This is mainly because, during DRL training,
the agent may otherwise become trapped in local optima due to in-
sufficient exploration, or the network may diverge or overfit under an
excessively high learning rate. By interrupting training after a speci-
fied number of episodes and resuming with the current outcome as the
initial point-while simultaneously reinitializing the value-function net-
work, learning rate, and exploration probability-the procedure facili-
tates the derivation of policies with stronger robustness and improved
generalization. As shown in Fig. 4, the network exhibits oscillations dur-
ing the first three training stages but gradually stabilizes in the final
stage. Consequently, the results obtained at the end of the third stage
were ultimately deployed in the real-world UAV experiments.

The cost surfaces of the translational subsystem control under dif-
ferent initial conditions and various control frameworks are presented
in Fig. 4, which reveals that the patterns of translational control per-
formance are fundamentally similar to those of the rotational loop.
The reference trajectory we utilized to test the performance is 5, =
Asin(2zt/T), where A € [0m,2.5m] and T € [5s, 8s] respectively denote
the amplitude and period of the position reference signal. The perfor-
mance of the proposed FNTSMC-DRL-FTDO control framework outper-
forms the other three methods. Additionally, the cost of the FNTSMC
(represented by the green surface) is lower than that of FNTSMC-DRL
(represented by the cyan surface), further indicating the superiority of
the DRL technique.

4.3. Stabilization analysis

Adaptively tuning the gains of a controller using DRL provides sig-
nificant advantages over directly learning the controller itself [30]. Op-
timizing the parameters through reinforcement learning preserves the
structure of the controller and does not compromise the stability of the
closed-loop system.

The primary reason for maintaining the stability of the closed-loop
system lies in the design of the activation function in the output layer
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(a) Reward of the training process of the rotational subsystem.
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(b) Comparative cost under different control frameworks and
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Fig. 3. Training and evaluation processes of the rotational subsystem. Subfigure (a) illustrates the variation of the reward function with the number of training
episodes during the four-stage training process of the rotational-loop controller. The four colors correspond to the four training stages. Subfigure (b) presents a
comparison of the reward functions under different initial conditions and methods, tested using the well-trained NN parameter optimizer.
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(a) Reward of the training process of the translational subsystem.
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Fig. 4. Training and evaluation processes of the translational subsystem. Subfigure (a) illustrates the variation of the reward function with the number of training
episodes during the four-stage training process of the translational-loop controller. The four colors correspond to the four training stages. Subfigure (b) presents a
comparison of the reward functions under different initial conditions and methods, tested using the well-trained NN parameter optimizer.

of the actor network. As shown in Fig. 1, the output layer employs the
ReLU activation function rather than tanh or other alternatives. The use
of ReLU restricts the control gains of the FNTSMC to the range [0, o). By
adding a small positive value ¢, the output of the actor network is effec-
tively bounded within (0, o), naturally satisfying the requirements of the
FNTSMC design. Even if the DRL parameters are not optimally selected,
potentially resulting in suboptimal performance of the neural network
optimizer, the system stability can still be theoretically guaranteed. This
is because the DRL design in this study operates independently of the
FNTSMC framework, which is the core principle of the hybrid learning-
based control method proposed herein. Therefore, after training, the de-
ployment of the neural networks in the online control framework does
not compromise system stability. In the following, guidelines are pro-
vided for several important parameters that are closely related to the
training stability of the neural networks.

1) Learning rate. The learning rate of the neural network in DRL
is a critical parameter that directly influences training robustness.

Empirically, the learning rate of the critic network should be main-
tained within (1073, 5 x 10~3), while that of the actor network should
remain in (107%,5 x 10~*). If the learning rate is excessively large, the
training process may diverge. Conversely, if the learning rate is too
small, the control gains of the FNTSMCs tend to remain near zero, ex-
hibiting negligible variation. Therefore, selecting appropriate learning
rates is essential for achieving both rapid learning and stable network
performance.

2) Exploration policy. In the PPO framework, the policy is defined
as a Gaussian policy, where the standard deviation serves as the level
of exploration. A common practice is to initialize the standard devia-
tion at a relatively large value and gradually decrease it. If the initial
exploration is too conservative, the policy may converge to a subopti-
mal local minimum. Conversely, if the standard deviation remains ex-
cessively large, the policy may fail to converge. Empirically, a range
of 0.2 to 0.5 is suitable for the standard deviation of the Gaussian
policy.
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3) Data volume per learning iteration. PPO is an on-policy DRL al-
gorithm, which requires all buffer data to be utilized during training. If
the maximum duration of each trajectory is T,, and the sampling period
is dt, the data size for each trajectory is N = Z—’;’ The data buffer capac-
ity should be maintained within the range of 2N, to 4N, If the buffer
capacity is too small, the network may fail to capture sufficient informa-
tion during training; conversely, an excessively large buffer may intro-
duce redundant or irrelevant data, especially during the initial training
phase. Therefore, buffer capacity is a crucial factor affecting the training
stability of the network.

Algorithm 2 Pseudocode of the control framework.

Require: N, Gz, ny, v;,i=1,2,...,N, T, dt

Require: rotational parameter optimizer Act,,,, translational parameter
optimizer Act,,,

1: Load system model, load initial controllers, load observers

2: Load disturbances Ay, i=12,...,N

3:t=0

4: whiler < T,, do

5: fori=1—- N do

6: Use observer (29) to estimate Ay

7: Calculate e, by (7) and éyi by (8)

8: Get control gains for translational FNTSMC (44) with Act,,,
9: Generate expected virtural input Uy with (33)
10: Generate expected attitude and throttle with (6)
11: Use observer (14) to estimate A o
12: Get control gains for rotational FNTSMC (42) with Act,,
13: Generate torque inputs with (21)

14: Quadrotor state update

15: end for

16: t+=dt

17: end while
18: Data save and figure plot

5. Simulation

This section conducts some numerical simulations to verify the su-
periority and effectiveness of the proposed FNTSMC-FTDO-DRL con-
trol framework. Building upon the results in Sections 3 and 4, the
pseudocode of the entire control framework can be illustrated in
Algorithm 2.

5.1. Simulation group 1
The topological graph is shown in Fig. 5. Correspondingly, the adja-

cent matrix A, in-degree matrix D,;, communication matrix 5, and
Laplacian matrix £, are respectively defined as

[0 1 1 1 1 1] 5 0 0 0 0 O

1 0 0 0 0 O o 1 0 0 0 O

1 0 0 0 O0 O 0o 0 1 0 0 O
A=l 0 0 0 0 of®=lo 0 0o 1 0 of

1 0 0 0 0 O o 0 0 o0 1 O

(11 0 0 0 O 0] o 0 0 0 0 1

[1 0 0 0 0 O]

o 0 0 0 0 O

o 0 0 0 0 O
Pa=lo 0 0o o o of “6)

o 0 0 0 0 O

o 0 0 0 0 O]
and £, = — Ay . The equation of the geometric center O, is defined
as

Xq =rgsin(0.271)+2, y; =r,cos(0.2x1) + 3, z, = sin (0.47xt) + 2 47)
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Fig. 5. Topological graph of simulation 1. The red line segment means the in-
formation can transmit between two nodes. The blue arrow indicates that in-
formation can only be transmitted from the tail node to the head node. (For
interpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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Fig. 6. ||e,;||, of each quadrotor under different control frameworks in simula-
tion 1.

with r; = 5m. The offsets of each quadrotor to ©,, denoted by v,,i =
1,2,...,6, are defined as

x =1y sin(0.2x1 + ¢y ), vy, = r, sin(0.271 + ¢y,;), v; . =0, (48)

where ¢, ; +(1 1) by (1—1) and r, = 2m.

Fig. 6 111ustrates the 2 -norm of the trackmg errors under six different
control frameworks. It is evident that the purple curve demonstrates the
best performance. The red curve also eventually converges to the origin;
however, in the absence of an adaptive parameter adjustment mech-
anism, significant fluctuations are observed during the initial phase.
Other controllers maintain system stability but consistently exhibit com-
paratively larger tracking errors.

We further conduct a simulation in which the reference trajectories
on the XOY plane remain fixed, while the altitude is set to different
constant values. The corresponding position response of the quadrotor
group under the “FNTSMC+ DRL +FTDO” control framework is shown
in Fig. 7, where the reference trajectories consist of the superposition
of two circles with different radii. The disturbances in the simulation
are modeled as combinations of sine functions with varying amplitudes,
phases, and periods. Mass uncertainties are applied only to the first four
quadrotors. Specifically, for i = 1,2,3,4, Am; = —0.2kg when 0 < 7 < 10,
Am; = 0.2kg when 10 < t < 20, and Am; = Okg when 30 < ¢ < 40.

The output of the FTDOs is presented in Fig. 8. As shown, the pro-
posed observer converges within approximately 1 second and accurately
estimates the external disturbances. In particular, the red rectangles
highlight sudden changes in disturbances caused by abrupt mass vari-
ations in quadrotors 1 to 4. The plotted curves demonstrate that the
observer can rapidly track the desired signals even under such abrupt
changes, confirming its effectiveness and robustness. These results val-
idate the fast convergence and strong robustness of the proposed ob-
server against abrupt disturbances.
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Fig. 7. Graphic demonstration of the quadrotor formation in a 3D view of sim-
ulation 1.

5.2. Simulation group 2

We further test our algorithm with a more complicated topological
graph and a more aggressive reference trajectory. The topological graph
of simulation group 2 is shown in Fig. 9. Correspondingly, the adjacency
matrix A,, in-degree matrix D,, communication matrix /3,, and Lapla-
cian matrix L, are defined as

M 1 0 1 0 O] 2 0 0 0 0 0
1 0 1 0 0 0 0 2 0 0 0 0
01 0 1 0 0 0 0 2 0 0 0
A=l o 1 0 1 ofP2%o 0 0 3 o of
00 0 1 0 1 0 0 0 0 2 0
0 0 0 0 1 O 0 0 0 0 0 1
1 0 0 0 0 O]
0 0 0 0 0 0
0 0 0 0 0 0
Ba=1o 0 0 0o o of “49)
0 0 0 0 0 O
o0 0o 0 0 0 o

and L, = Dy, — A,,. The equation of the reference trajectory of the ge-
ometric center O, is defined as

xg =ry c08(0271) +2, y; =rgsin(0.4xt) + 3, z; =sin(04z1)+2  (50)

with r; = 5m. The offsets of each quadrotor to ©,, denoted by v,,i =
1,2,...,6, are defined as

v = [r,,0,0]T, v, = [r, sin (6y), r, cos (6y),0]",
vy = [—r, sin(@y), r, cos(6y), 0],
v, = [=r,,0,0]T,vs = [—r, sin(8y), —r, cos(6,), 017,

Ve = [r, sin(0y), —r, cos(6,), 0], (51)

where 6, = 60° and r, = 2m.

Fig. 10 shows the 2-norm of the tracking errors under differ-
ent control frameworks. The corresponding three-dimensional po-
sition response of the quadrotor group is presented in Fig. 11,
while the outputs of the FTDOs are shown in Fig. 12. Simi-
lar to the results in Figs. 6 and 10, the control performances of
FNTSMC+DRL (cyan curves) and FNTSMC+FTDO (red curves) are
slightly better than that of the traditional FNTSMC (blue curves), al-
though the tracking errors remain relatively large. In contrast, un-
der the FNTSMC+DRL+FTDO framework, the tracking errors con-
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Fig. 8. Output of the observers in simulation 1.

O—0—©
()

Fig. 9. Topological graph of simulation group 2. The red line segment means
the information can transmit between two nodes. The blue arrow indicates that
information can only be transmitted from the tail node to the head node. (For

interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 10. |le,||, of each quadrotor under different control frameworks in simu-
lation 2.

verge rapidly to zero for both the double-circle and co-shaped reference
trajectories.

To clearly highlight the performance differences among the various
control frameworks, we summarize the L; and L, norms of the con-
sensus tracking errors in the two simulation scenarios. Table 3 provides
a detailed comparison of the performance of each control method. The
convergence times of the different methods in the two sets of simulations
are listed in Table 4. As shown in Tables 3 and 4, the proposed method
achieves the fastest convergence and exhibits the smallest control errors
under strong disturbances.
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Tracking errors of the quadrotor formation under two groups of simulations.

Simulation Group 1

@ @ ® @ ® ® @ Proposed
L,-norm: Z,/ Hen‘,-||2(><105) 0.79 0.44 0.51 0.91 1.86 0.28 0.17 0.09
L,-norm: Z, _/ \le",,||,(><105) 0.91 0.54 0.62 1.23 245 0.20 0.14 0.12
MSE:* %Z,f ”ewlli 249.35 113.17 132.40 171.01 703.91 35.62 21.25 15.45
BV LY [ lley — ol 13473 7713 8476 1282 3953 2789 1837  14.05
Simulation Group 2

b@ b@ @ @> ®° ®"° @ Proposed
L,-norm: Z,f \|ew||z(><10") 1.30 1.95 1.05 4.24 9.77 2.16 1.47 0.81
L,-norm: Z,/ Hem,vll,(XIO‘s) 0.18 0.27 0.15 0.59 1.41 0.33 0.22 0.12
MSE: liz,f \|ew||§ 16.74 31.54 15.36 52.28 268.27 31.25 18.65 13.12
EV: %2, S ey = peill? 13.60 23.80 13.32 14.76 35.54 22.19 1443  11.89

@ MSE: Mean Square Error, EV: Error Variance.

b @: FNTSMC ®: FNTSMC-FTDO ®: FNTSMC-DRL @: [33] ®: [13] ®: LBF-based @: Power-rate reach-

ing law
Table 4

The convergence time of different control methods.

Simulation Group 1

Simulation Group 2

“®
18.2s

"
12.55

"
12,55

@
6.5s

®

2®
2.5s

2@
7.6s

5.0s

Proposed

RO
7.5s

@
10.0s

2
7.5s

@
8.1s

®

®
5.2s

@
5.6s

Proposed
5.0s

a @: FNTSMC @: FNTSMC-FTDO ®: FNTSMC-DRL @: [33] ®: [13] ®: LBF-based @: Power-rate reaching law.
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Fig. 11. Graphic demonstration of the quadrotor formation in a 3D view of
simulation 2.
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Fig. 12. Output of the observers in simulation 2.
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6. Physical experiments

This section presents real-world experiments to further validate the
proposed control framework. The overall experimental setup is illus-
trated in Fig. 13, with the quadrotors used in the experiments shown
in the bottom part of the figure. Each quadrotor has a mass of 0.722 kg
and a wheelbase of 250 mm. To ensure safety during the experiments,
the maximum velocity and acceleration of the quadrotors are limited to
3 m/s and 2g ~ 19.6 m/s?, respectively. Four quadrotors are employed
to demonstrate consensus formation control. To evaluate the robust-
ness of the proposed method under strong disturbances, two types of
external perturbations are introduced in the experimental environment:
high-speed rotating fans and weights suspended by elastic ropes. More-
over, aerodynamic interactions among quadrotors in formation, as well
as discrepancies between each quadrotor’ s center of mass and geomet-
ric centroid, further complicate flight control. The complete hardware
configuration of the experimental environment is depicted in the top
part of Fig. 13. Four self-designed quadrotors, each equipped with dis-
tinct night-light colors, are used to form the formation. The flight con-
trol unit (FCU) of each quadrotor is the Holybro Kakute H7 v1.3, which
runs the open-source PX4-Autopilot firmware. The on-board computer
is a LattePanda Alpha 864s running Ubuntu 20.04 with ROS Noetic. The
FCU communicates with the on-board computer via a USB-to-TTL mod-
ule and utilizes the MAVROS protocol for real-time data transmission.
Quadrotor localization is provided by a VICON indoor positioning sys-
tem equipped with 14 high-resolution optical cameras, delivering pre-
cise position and attitude feedback at a frequency exceeding 200 H z.
Velocity feedback is obtained by fusing VICON measurements with data
from the Inertial Measurement Unit (IMU) using a Kalman filter. The
detailed hardware configuration of the quadrotors is summarized in
Table 5. The ground station computer is used solely for monitoring the
quadrotor states and collecting experimental data; it does not send any
control-related commands, as the proposed control protocol is fully dis-
tributed and decentralized.

6.1. Experiment group 1

The topological graph of the quadrotor group is shown in Fig. 14.

The adjacent matrix A, in-degree matrix D,;, communication matrix

pl> pl>
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Hardware configuration
main body

Motion capture system
%
Vicon cameras

for indoor
positioning

\4

Night lights s

PC: Khadas VIM4
A battery

< UAV3 : UAV4

Fig. 13. The entire experiment configuration. The flight formation consists of four quadrotors. Each quadrotor is composed of a frame, flight controller, onboard
computer, propulsion system, and a safety remote controller.

Fig. 14. Topological graph in Experiment Group 1. The red line segment means the information can transmit between two nodes. The blue arrow indicates that
information can only be transmitted from the tail node to the head node. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Table 5
Hardware configuration of the quadrotors.
Hardware Configuration Hardware Configuration
Mass of the quadrotor 0.722kg On-board computer LattePanda Alpha 864s

FCU Holybro Kakute H7 v1.3

Firmware of the FCU

PX4-Autopilot

Operating system Ubuntu 20.04 - ROS Noetic ~ IMU BMI270 (integrated in the FCU)
Positioning system VICON Motor VELOX V2207 KV1750
Battery 4S 2700mAh Propeller 5.5-inch three-blade propeller
Wi-Fi transmission delay 4 —8ms ESC Tekko32 F4 4inl 60A ESC (AM32)
EEE FNTSMC-FTDO FNTSMC-DRL FTPD [13]
BN FNTSMC-DRL-FTDO [ PX4-PID B RFNTSMC-ESO [33] HEEE FNTSMC
UAV1 UAV2
1 1 o
z
v
2
;0.5 5 © _
/ yaTA Vics
0 0
UAV3
, ; UAV4 2
QL
2
/V\’\'VW\I\NV\ 8-
~05 0.5 ) [
= N\ . ~/ “0 5 10 15 20 25 30 350 5 10 15 20 25 30 35
\, A \V \ V Time (s) Time (s)
o 2
% 5 10 15 20 25 30 350 5 10 15 20 25 30 35 i i X
Time (s) Time (s) Fig. 17. Output of the observers in experiment group 1.

Fig. 15. |le,||, of each quadrotor under different control frameworks.
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Fig. 16. Graphic demonstration of the quadrotor formation in a 3D view.

By, and Laplacian matrix £, are respectively defined as

>
0 1 1 1 30 0 0 1 0 0 O
1 0 0 O o 1 0 0 o 0 0 O
A= 0 0 of P =lo 0 1 of P T|o 0 o of
1 0 0 O o 0 0 1 o 0 0 O
(52)
and £, =D, — B,;. The geometric center O, = [0,0.2, 1.5]" remains

unchanged. The offsets of each quadrotor to ©,, denoted by v,,i =
1,2,3,4, are defined as

v = [L.3cos (0.4xt1), 1.3 sin (0.4xt), 0.3 sin (0.27¢) + 0.5]7,

vy = [=1.3sin(0.4xt), 1.3 cos (0.4x1),-0.5]",

v3 = [=1.3cos (0.4xt), —1.3sin (0.4x1),0.3 sin (0.271) + 0.5]",

v, = [1.35sin (0.4xt), —1.3 cos (0.4xt), —-0.5]".

Fig. 15 illustrates the 2-norm of the consensus tracking errors un-
der different control frameworks, while the corresponding 3D position
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response is shown in Fig. 16. The response of the PID controller is rel-
atively smooth; however, it exhibits noticeable steady-state errors and
phase delays. In contrast, the proposed FNTSMC-DRL-FTDO method out-
performs all other controllers. Benefiting from the integration of the
FTDO and the DRL-based parameter optimizer, the proposed framework
demonstrates superior control performance under strong disturbances
and uncertainties. As highlighted in Fig. 15, the proposed method stabi-
lizes the system within a short duration while avoiding overshoot or os-
cillations, even in the presence of external disturbances. Fig. 18 further
illustrates that the control gains are time-varying rather than fixed pre-
tuned constants. The gains are initialized at 0 and converge to constant
values in less than 2 seconds. According to Eq. (44), this convergence is
primarily attributed to the convergence of the consensus tracking errors
e,and ¢é,.

Fig. 17 presents the corresponding outputs of the FTDO. As observed,
the outputs in the x and y directions exhibit noticeable oscillations,
with periods closely matching those of the reference trajectories for the
quadrotor formation. This periodic behavior results from the influence
of the fans, which introduce external disturbances to the quadrotors.
In the z direction, the FTDO output reflects an equivalent weight that
closely aligns with the masses suspended beneath the quadrotors, fur-
ther demonstrating the effectiveness of the observer. Fig. 18 records the
real-time control gains k,;, k,,, and k,4, which are adaptively tuned by
the DRL-based optimizer.

Remark 10. It should be noted that the DRL-based parameter opti-
mizer employed in this study follows an offline training-online deploy-
ment paradigm. Specifically, the neural network (NN) optimizer is first
trained offline in a simulation environment. Subsequently, the trained
NN is deployed across all quadrotors for online execution. During each
control cycle, the program simultaneously adjusts the controller param-
eters and generates the corresponding control commands. Although the
offline training process may be time-consuming, the online execution is
highly efficient. In particular, on the LettaPanda Alpha 864s processor
used in our system, the execution time for a single run of the NN opti-
mizer is less than 5ms, which ensures that the real-time performance of
the system is not compromised.
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Fig. 19. Topological graph in Experiment Group 2. The red line segment means
the information can transmit between two nodes. The blue arrow indicates that
information can only be transmitted from the tail node to the head node. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 22. Output of the observers in experiment group 2.

6.2. Experiment group 2

Furthermore, we employed a more aggressive reference trajectory
to test the performance of the quadrotor formation under more extreme
environmental conditions. The topological graph of the quadrotor group
is shown in Fig. 19. The adjacent matrix A ,, in-degree matrix D

p2° p2>
communication matrix B, and Laplacian matrix L, are respectively

2>
defined as
0 1 0 1 2 0 0 0 1 0 0 O
1 0 1 0 0 2 0 0 0 0 0 0
A2=lo 1 0 ofP2lo o 1 o P20 o o of
1 0 0 0 0 0 0 1 0 0 0 0
(53)

and £, = D,, — B,,. The equation for the geometric center O, is defined
as

x4 = cos (0.4xt), y; =sin(0.8z1) +0.2, z; = 1.5. (54)

The offsets of each quadrotor to ©,, denoted by v;,i = 1,2, 3,4, are de-
fined as

= [0.5,0,0.3sin (0.2z1) + 0.5]7, v, = [0,0.8,-0.5]7,

vy = [<0.5,0,0.3 sin (0.277) + 0.5]7, v, = [0,—0.8,—0.5]". (55)

Similarly, the gains tuned by DRL, the 2-norm of the tracking errors,
the position response in a 3D view, and the corresponding output of
the FTDO are recorded in Figs. 20-23, respectively. The error statisti-
cal curves from Experiment 2 exhibit the same pattern as those from
Experiment 1, indicating that the proposed control framework consis-
tently outperforms other methods. Specifically, we calculated the sum
of the L, and L, norms of the consensus errors for the quadrotor for-
mation, as presented in Table 6, which demonstrates the superiority of
the FNTSMC-DRL-FTDO method. Finally, as shown in Fig. 22, the os-
cillation frequency of the observer output curve in the y direction is

15
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Table 6

k,», and k,4 tuned by DRL in experiment group 2. During the actual experiments, these parameters were optimized separately along

Tracking errors of the quadrotor formation under two groups of experiments.

Experiment Groupl

@ @ ® @ ® ® Proposed
Ly-norm: Y, [ |le,;[l,(x10*) 07699  0.6668 03946  2.3050 0.7705  0.8876  0.2606
L,-norm: Y, f |\e,l>,||1(><104) 1.1409 0.9841 0.5905 3.0267 1.1450 1.2361 0.3897
MSE:* L %, [ lle, 112 13516 12391 04388 12,6218 13572 25000  0.1808
EV:® % > / ||e,,_, - yev,||§ 0.0615 0.1987 0.0640 1.7743 0.0653 0.4766 0.0340
Experiment Group2

@ @b @P @ ®P ®P Proposed
L,-norm: 21 f He,lv,||2(><103) 6.6189 3.5926 3.5141 8.5403 7.3302 3.2625 1.9650
Ly-norm: Y, [ |le,,1[,(x10%) 09820  0.5438 05319  1.1355 1.0839 04707  0.2926
MSE: £ 3, [ lle,, 12 19232 0.6389  0.6055  3.7708 25496 0.5862  0.2336
EV: ll > f lle,; — yev[||§ 0.1279 0.1193 0.1006 0.8509 0.3004 0.1579 0.0741

2 MSE: Mean square error, EV: Error variance.
b @: FNTSMC ®@: FNTSMC-FTDO ®: FNTSMC-DRL @: PX4-PID ®: [33] ©: [13].

approximately twice that of the x direction, which aligns perfectly with
the characteristics of the pre-defined reference trajectory.

7. Conclusions

This paper presents a novel robust control framework for quadrotor
formations that integrates FNTSMCs, DRL techniques, and FTDOs. First,
FNTSMCs are designed for the closed-loop system to ensure rapid and
robust tracking. Next, FTDOs are employed to accurately estimate the
uncertainties and external disturbances affecting the quadrotors within
a fixed time. The observer outputs are then incorporated into the switch-
ing control laws, enhancing controller robustness and improving overall
control performance. The fixed-time stability of the multi-agent system
is rigorously guaranteed in the Lyapunov sense. To further improve per-
formance, DRL is used to train a parameter optimizer that adaptively
tunes selected hyperparameters of the FNTSMCs based on the quadro-
tors’ tracking errors. Finally, extensive simulations and physical exper-
iments are conducted to validate the effectiveness and robustness of
the proposed framework. Our future work will focus on extending this
framework to multi-quadrotor formation systems with communication
delays and switching topologies.
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Appendix A. Abbreviations and mathematical notations
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SMC Sliding Mode Control

FNTSMC  Fast Nonsingular Terminal Sliding Mode Control
FTDO Fixed-Time Disturbance Observer
DRL Deep Reinforcement Learning
ADP Adaptive Dynamic Programming
NN Neural Network

PPO Proximal Policy Optimization
TRPO Trust Region Policy Optimization
GAE Generalized Advantage Estimation
FCU Flight Control Unit

MU Inertial Measurement Unit

ESC Electronic Speed Controller

Notations related to quadrotor mathematical model:

n=I[xyz] Position of the quadrotor in world frame
p=1¢,0,p]" Attitude of the quadrotor in world frame

®=1[p,q.r" Angular rate of the quadrotor in body frame

kyy k. T and drag coeffici

J =diag(J,, J,,,J;;) Inertia tensor matrix of the quadrotor

m Mass of the quadrotor

g Gravitational acceleration

7=, 1'},,1,]-r Torque

uy Throttle

3, Di acted on the i subsy of the q
8, Disturbance acted on the translational subsystem of the quadrotor

pa =g, 04 wy1" The expected attitude angle
N Expected geometric center of the quadrotor formation
v The offset between the i-th quadrotor and 7,

Notations related to topological graph:

N Number of the quadrotors

9 Graph that represents the quadrotor formation
v Node set of graph §

v; The i-th node in node set V

£ Edge set of graph G

N; The neighbor set of v;

A The adjacency matrix

a;; The i-th row, j-th column element of A
d; d; = 27:1 aji

D = diag(d,,d,, - .dy) In-degree matrix

b

The information accessment between the i-th node and the leader node
B Leader adj; icati
v) Leader node
G =W, E vy, b),i=1,2,--,N  The augmented graph

matrix (or matrix)

Notations related to controller design and DRL:

Constants in rotational subsystem control design
Control gains in rotational subsystem control design
Constants in translational subsystem control design
Control gains in translational subsystem control design

P15 P25 P35 P45 Pss Pe
Kpts ks kp3s kpy
415 925 935 945 955 96
Kyis ks Ky kyy

T, Maximum simulation time of an episode

dr Sampling period

stdy Initial standard deviation of the exploration policy

std,i, ini standard deviation of the ion policy

stdy Step of the decrease of standard deviation of the exploration policy

stdyy The number of learning episodes after each reduction of standard deviation
14 Discount factor

K, Number of NN gradient descends in one learning iteration

by Buffer size

Qs €y Learning rate of the Actor network and Critic network

Cons 43 Cpuins Cax Parameters used in GAE technique
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