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Abstract: The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demon-
strated a promising platform for utilization in real-world applications. In particular, a UAV equipped
with a vision system could be leveraged for surveillance applications. This paper proposes a learning-
based UAV system for achieving autonomous surveillance, in which the UAV can be of assistance in
autonomously detecting, tracking, and following a target object without human intervention. Specifi-
cally, we adopted the YOLOv4-Tiny algorithm for semantic object detection and then consolidated it
with a 3D object pose estimation method and Kalman filter to enhance the perception performance.
In addition, UAV path planning for a surveillance maneuver is integrated to complete the fully
autonomous system. The perception module is assessed on a quadrotor UAV, while the whole system
is validated through flight experiments. The experiment results verified the robustness, effectiveness,
and reliability of the autonomous object tracking UAV system in performing surveillance tasks. The
source code is released to the research community for future reference.

Keywords: UAV; object detection; object tracking; deep learning; Kalman Filter; autonomous
surveillance

1. Introduction

Unmanned aerial vehicles (UAVs) have revealed their unprecedented potential for
commercial, military, and civil-government utilization in a wide range of applications
such as infrastructure inspection [1], aerial photography [2], logistics [3], and so forth. The
employment of a UAV incorporated with vision techniques is exclusively advantageous
for tasks that require distinct visualization and robust perception, for example, aerial
surveillance operations.

Surveillance plays a vital role in maintaining safety and security as it detects and
prevents emerging unusual events. Many important tasks, such as information collection,
military reconnaissance, target tracking, and even traffic management, have a connection to
surveillance technologies. Nonetheless, a conventional surveillance mission is conducted
through manual practice to identify targets, which is time-consuming, labor-intensive,
tedious, costly, and risky for operators if entering some impassable regions. Hence, the
development of a UAV as a surveillance tool is gaining a tremendous amount of popularity
to reduce human effort significantly. A UAV is capable of assisting the surveillance activities
by its agile maneuverability to approach confined areas of low accessibility and its visual
functionality to capture the remote scene in real-time. In addition, an autonomous UAV
without manual teleoperation has been shown as a cost-effective solution in resource
optimization to aid routine surveillance in different industries. On behalf of mankind,
an autonomous UAV is extremely helpful for continuously monitoring the movement of
distant target objects.
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In the past few years, the UAV research community has endeavored to enhance the
tracking performance of vision-based surveillance in different application scenarios. For
instance, Chung et al. [4] implemented the standard but relatively old techniques based on
background subtraction and frame differencing to detect objects from an aerial robot. How-
ever, these methods work poorly with a moving UAV that has high-frequency vibrations in
the camera motion. Then, Fang et al. [5] showed that a UAV system with a kernel-based
mean shift algorithm [6] could not robustly track the target object with changing size
and moving speed. Using a color-based tracker with multi-part representation, Teuliere
et al. [7] used a UAV to autonomously track and chase a moving target. However, many
environmental factors could result in malfunctions in their tests, such as low-resolution
imagery, noise corruption, variation of illumination, especially when the background and
targets’ color are similar. Other object tracking techniques like the drone-based mobile
surveillance system with mobility-aware dynamic computation offloading and pan-tilt-
zoom (PTZ) camera from Kim et al. [8], and the approach offered by Zhang [9] overload
computational costs on the UAV platform. Due to the limited onboard computing resources,
their algorithms could not perform in real-time and onboard directly. Alternatively, object
tracking systems with multiple sensor data fusion suggested by Carrillo et al. [10] and
Cho and Lee [11], Liu et al. [12] are also expected to increase the payload and battery
power consumption of a UAV significantly, and thus contradict low-cost UAV solutions.
In addition to the above, many of the existing works solely emphasize the perception of
targets. For instance, Wang et al. [13] mainly applied a camera with gimbal and further
merge GIS information for object detection and tracking.

Given the above, in general, most object tracking approaches on UAVs that rely on
the traditional image post-processing techniques are not competent enough for real-time
surveillance applications. Furthermore, UAVs are constrained with size, weight, and
power (SWaP) limitations, and therefore in many of the state-of-the-art UAV technologies a
single camera is usually deemed to be the relatively optimal sensor. Moreover, the notable
advancement of computer vision technologies has enabled a prosperous area of research
for the deep learning-based UAV system in contributing to the surveillance works. Lastly,
with the limited field of view (FoV) of camera, it is also considered that the UAV should be
capable of maneuvering so that a dynamic target is tracked and being contained within the
FoV during surveillance missions. Therefore, we are motivated to develop a deep learning-
based UAV system that accomplishes real-time and dynamic object tracking to achieving
autonomous surveillance. Without the prior information of the environment, the proposed
UAV system could use deep learning-based perception and filter-based 3D object pose
tracking methods to monitor the activity of target objects in the surrounding environment
during flights. In particular, the main contribution of this work is an autonomous object
tracking UAV system for surveillance application, in which,

a. real-time, learning-based object detection algorithm is integrated with the UAV em-
bedded system to autonomous locate the desired object without human interference;

b. a 3D pose tracking algorithm with object detection, stereo reconstruction techniques,
and Kalman filter is implemented in a low-cost UAV system to recognize, locate and
track the target object autonomously; whilst an UAV path planning is included for
surveillance mission, which obeys the dynamic constraints for UAV to track and
follow the target object movement;

c. system experiments include both dynamic object and dynamic sensor, and the results
validated good performance of the proposed system.

The following content of the paper is organized as follows: Section 2 introduces the
relevant literature. Section 3 describes the overall hardware and software architecture of
the UAV system. Section 4 and 5 explain the detailed methodologies of perception, tracking
and maneuver. Section 6 presents and analyses the experimental results. The video footage
of experiments and implementation codes are attached in the supplementary material.
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2. Related Work
2.1. Object Detection

Object detection includes object localization and classification. Researchers have been
attempting numerous approaches to achieving object detection over the last decades. Wang
and Liu [14] described the traditional object detector processed pipeline of 4 stages, includ-
ing (1) multi-scale sliding window, (2) hand-crafted features extraction, (3) classification by
support vector machine (SVM) or AdaBoost classifier, and (4) non-maximum suppression
(NMS), and combined bounding box to optimize object detection performance. However,
traditional approaches encountered limitations such as low robustness and high inaccuracy
for various geometric changes while also spending excessive computation costs for real-
time operation. Other discrete object detection algorithms like point target detection and
generalized contour search algorithms [15] showed better performance than the preceding
approach. However, they still suffered limitations of accuracy, speed, cost, and complexity.

Deep learning-based approaches have emerged as the key breakthrough for object
detection in computer vision and the UAV industries. The state-of-the-art object detection
algorithms, particularly the convolutional neural networks (CNNs) series and ‘you-only-
look-once’ (YOLO) series [16], are both derived from the DNNs. Andriluka et al. [17],
Bejiga et al. [18] and Lygouras et al. [19] fused the CNN-based algorithms with onboard
visual sensors of UAV to achieve real-time object detection in conducting search and rescue
(SAR) missions. Meanwhile, Tijtgat et al. [20], Kyrkou et al. [21], and Feng et al. [22]
employed ‘YOLO’ series algorithm as the object detection framework for real-time UAV
applications. Deep learning-based approaches, both CNNs and ‘YOLO’ method, are
deemed to be the powerful and prevailing object detectors embedded in the vision-based
UAV navigation system.

Specifically, ‘YOLO’ took advantage of CNNs based architecture and applied single
CNN on the whole image, generating bounding boxes coordinates, confidence level, class
probability in one evaluation. Nevertheless, despite the accomplishment of real-time
detection speed, ‘YOLO’ causes inaccuracy in object localization, especially for small or
adjacent objects in images. Therefore, several updated versions of the ‘YOLO’ framework
like YOLOv2 [23], YOLOv3 [24], YOLOv4 [25] were developed to improve speed, accuracy,
and availability for embedded computing devices with limited computational resources.

The ‘YOLO’ object detection systems have high computational requirements, among
which the powerful graphics processing unit (GPU) is a fundamental component. The
computational resource on a UAV’s GPU remains the most difficult issue that causes
slow speed and constrains the usage of state-of-the-art object detectors. Hence, Shafiee
et al. [26] proposed a ‘Fast YOLO’ framework to speed up the object detection by 3.3 times.
Additionally, Huang et al. [27] recommended the ‘YOLO-LITE’ that works well with non-
GPU computers. Lastly, ‘YOLO v2-Tiny’ and ‘YOLO v3-Tiny’ by Redmon [23,24] and
‘YOLO v4-Tiny’ by Bochkovskiy [25] significantly reduce the network complexity of the
original ‘YOLO’ framework. ‘YOLO v3-Tiny’ [24] delivers a higher attainable frame per
second (FPS) and lower network size than the ‘YOLO’ model.

After an intensive investigation of the state-of-the-art computer vision research, this
project utilized the latest ‘YOLOv4-Tiny’ on the UAV’s resource-limited onboard computer.
Due to the SWaP constraints, we consider the high detection speed (high FPS) with accept-
able precision and portability of C-based release to be an adequate and suitable solution to
the proposed objectives. The detailed implementation of ‘YOLO v4-Tiny’ as the perception
solution is elaborated in Section 4.

2.2. Object Tracking

Beyond object detection, the remarkable development of computer vision technolo-
gies in recent years encourages an exciting new array for object tracking applications. In
addition to localizing and classifying the target object, object tracking involves the motion
estimation or trajectory prediction of objects across a sequence of frames [28–30]. Never-
theless, it is deemed more challenging than object detection as it faces uncertainties and
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complexities in aspects including scene illumination changes, the abrupt motion of objects,
occlusions, noise corruption in images, camera motion blur problem, and so forth [28–30].
Lee et al. [28] further pointed out that occlusion is the most common issue that happens
in object tracking, regardless of its type (e.g., partial occlusion, full occlusion, inter-object
occlusion), which leads to defects of tracking loss and identity switches. Occlusion means
the tracked object is not available for camera to keep monitoring its motion state while the
object is still present at the same scene. Lee et al. [28] also recommended fusion methods
with linear or non-linear dynamics models to handle the occlusion problem.

In recent years, some researchers initiated ‘tracking-by-detection’ algorithm [31], in
which the generative, discriminative, and hybrid statistical modeling were fused to improve
the performance of object tracking. Nowadays, benefiting from the revolutionary enhance-
ment of deep-learning, different learning-based tracking frameworks were presented, such
as unsupervised deep-learning algorithm, pre-training network combined with correla-
tion filter, siamese-based tracking network as well as the spatially supervised recurrent
convolutional neural networks with YOLO and long short-term memory (LSTM) [32–34].
Another noteworthy development was the ‘DeepSort’ tracker proposed by Wojke et al. [35].
Specifically, ‘DeepSort’ applied CNN to the SORT (simple online and real-time tracking)
framework that implemented Kalman filtering in image space and the Hungarian method.
It learned the features of tracked object and predicted the future associated trajectories and
positions of the objects of interest. The recent work from Punn et al. [36] demonstrated the
positive results of using YOLOv3 with DeepSort tracking scheme to observe the social dis-
tancing situation. Both Kalman filter and the Hungarian method helped motion prediction
and association of object tracking.

2.3. Unmanned Aerial Vehicle (UAV) Applications with Target Monitoring

Object tracking in image planes of camera and object tracking in vision assisted UAV
systems are two different study fields as the latter requires additional relative control
and coordination of UAV in flight [37]. The fast movement of airborne UAV, limited
field of view (FoV) of onboard camera, and planning of UAV to maintain visible distance
with goal objects are all essential considerations in planning object tracking by UAVs. In
addition, the limited computational resource also creates the difficulties of object tracking
on embedded systems. Ryan and Hedrick [38] used UAVs installed with infrared cameras
to track the helicopter during SAR missions. The Kalman filter estimation was proven as
an effective solution to predict a helicopter’s position and velocity. Rathinam et al. [39]
applied the vision-based following systems on UAVs to autonomously track the path of
river or coast; but they occasionally struggled with high error rate and low robustness. The
better approaches in this field were the image feature processing with Kalman filtering [40]
and the appearance-based tracking algorithm on color and depth data [41]. In addition to
the above, Xu et al. [42] made a good paradigm in employing YOLO and JPDA on small-
scale UAVs to achieve real-time multiple object tracking. On the other hand, some of the
proposed systems, such as works carried out by Jayaweera and Hanoun [43], Han et al. [44]
or Haugen and Imsland [45], focused more on the planning and control of the UAV system
during a target-tracking mission, in which path planning or trajectory optimization tasks
were carried out and addressed. However, from their literature, limited emphasis on the
real-time perception methodology was given.

To summarize, deep learning-based object detector with filter-based method is con-
sidered as a novel and promising approach with high flexibility in categories of target
objects, reduced occlusions, and real-time processing speed. As for this work, we utilized
the YOLOv4-Tiny object detector and Kalman filter to perform target object tracking, and
further proposed an efficient UAV planning to achieve a real-time accurate tracking and
autonomous surveillance UAV system.
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3. System Architecture

To perform a surveillance mission, a camera that acts as optical sensor is essential.
Hence, the main component of the vision-based system is an Intel RealSense D435 stereo
camera for visual sensing and depth acquisition as it is proven to have light weight,
wide FoV with a global shutter for moving camera motion, and high depth accuracy and
stability. Besides, we employed a powerful GPU for embedded systems, the Jetson TX2
onboard computer to process deep learning-based algorithms on small-scale quadrotor
UAV platform. The deployed flight controller is a Pixhawk 4 and an external VICON Mocap
system is utilized for indoor visual localization. Moreover, the framework is supported by
the robot operation system (ROS), using the MAVROS package to communicate PX4 flight
controller and planner node at the onboard computer. Figure 1 shows the prototype of the
proposed system.
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Figure 1. Prototype of proposed autonomous object tracking system.

The predominant software architecture of the designed autonomous object tracking
UAV system consists of (1) perception module, (2) object tracking algorithm, (3) UAV
maneuver, and (4) ground station visualization. In brief, the UAV system perceives the
RGB image and the depth data, and with the deep-learning based object detector YOLOv4-
Tiny, the drone can then recognize objects in its FoV. The generated 2D bounding boxes are
fused with the depth measurement from camera and consecutive regions of interest (ROI)
to obtain the 3D pose estimation of objects. A Kalman filter prediction module is integrated
to help anticipating the motion of the tracked object. Lastly, a path planning component is
incorporated with a finite state machine (FSM) to perform target tracking and following,
while the preliminary visualization user interface is included. Figure 2 shows the overall
software architecture.
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4. Object 3D State Estimation

The foremost and essential procedure to perform object tracking would be precepting
an object in a 3D world. We adopt a learning-based detector to generate 2D information
and conduct 3D stereo reconstruction techniques. In this section, we will first discuss
the adopted object detection method and further elucidate the 3D position information
acquisition.

4.1. Object Detection

The UAV must be capable of identifying the target object independently. To achieve
this, we employed the state-of-the-art YOLOv4-Tiny algorithm as our object detection
solution due to the robustness, detection speed, and computational cost requirements
during the tracking process. This subsection mainly discusses implementing YOLOv4-Tiny
in the proposed UAV system, particularly the model training with the dataset and the 2D
bounding box prediction.

4.1.1. Dataset Establishment and Training

The first step in using the open-source ‘YOLOv4-Tiny’ would be the preparation of a
customized dataset for training. Generally, each training class should have at least 2000
images. Meanwhile, to avoid overfitting and improve training results, it is suggested to
have a validation dataset to provide an unbiased assessment of a model fit on the training
dataset. Hence, the entire dataset would comprise subsets of the training set and the
validation set.

Our model aims to detect three classes of objects (i.e., Winnie-the-Pooh soft toy, yellow
bulb ball and human). The human class usually appears as the target object in a surveillance
mission, while the other two classes are included for experimental convenience. To improve
the detection performance of the trained model, the custom dataset should contain images
with random and dissimilar illumination conditions, scales, view of angles, aspect ratios,
resolutions, and backgrounds. Additionally, it is also considered that the system could
be integrated with other custom-trained models for specific surveillance missions. We
established a dataset including 13,500 images, composed of 2000 training images plus
500 validation images (4:1 ratio) for each class, as well as 6000 background images with
no target object. The 6000 background pictures are designed as negative images to raise
the model’s accuracy because it will learn to detect no object in a scene, thus reducing
false positive (FP) results. Additionally, within the training dataset, many images contain
multiple objects (i.e., Pooh, yellow bulb ball, human) in a single frame, which would
enhance the detection accuracy in the scenario that multiple target objects appear in the
same scene. Some representative images of our dataset are shown in Figure 3.
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Data labelling is an important process indicating interest in the object and providing
the ground truth bounding box of the image dataset, so that the IOU (intersection over
union) and the confidence score can be calculated, and the optimal weights for the model
can be developed. We manually labelled the bounding boxes and the corresponding class
names (i.e., Pooh, yellow bulb, human) on all 13,500 images by employing an annotation
tool called LabelImg designed by Tzutalin [46].

During the training process, the discrepancy is calculated by loss function, and the
result is referred to as loss or cost through the continual comparison on a large number
of iterations. Two important metrics that quantitatively measure the performance in the
training process are the mean average precision (mAP) and the loss. In short, the intentions
of the training are to maximize the mAP and to minimize the loss. Empirically, a training
process is deemed as effective if the mAP reaches acceptable value and levels off after
a certain number of training epochs. As the iteration number of the model increases,
the mAP also gradually increases as the model is more capable of detecting the target
object accurately. We observed the changes of loss throughout the process, as the model
executed an optimization of sum-squared error loss and multi-part loss function to reduce
the overall loss. We trained the model until there was no significant drop of loss, which
indicated that the discrepancies between the model predictions and the ground truths were
sufficiently low.

4.1.2. Two-Dimensional (2D) Bounding Box Prediction

In real-time object detection, YOLO predicts the 2D location of a detected object by
generating 2D bounding boxes on every single frame of the streaming video input. Since
the upgrade of YOLOv2, the k-means clustering method and anchor-box mechanism were
adopted in predicting 2D bounding boxes on objects. Using the anchor box to predict
bounding box could increase the average IOU for each grid cell and thus enhance the
overall accuracy of object localization.
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There is a pre-defined number and shape of anchor boxes on each grid cell through the
k-means dimension clusters method. For instance, if the default number is 3, the YOLOv4-
Tiny outputs 6 × 6 × 3 anchor boxes on a 6 × 6 feature map. The center of the anchor box
is always located at the center of its respective cell. The shape is normally rectangular in
different orientations and aspect ratios. Every anchor box predicts class and “objectness”.
Among all numbers of anchor boxes on different grid cells, only the anchor boxes which are
predicted to contain the object (i.e., objectness = 1 with a certain confidence score) would
be kept. Then, only the anchor boxes that have the highest similarity and closest shape to
the ground-truth box of a target object would be kept as positive anchor boxes for further
processing. In other words, the selection of the anchor box depends on the confidence
score output of the network and the following non-max suppression (NMS) technique, or
more explicitly, the highest IOU between the ground-truth box and the selected anchor
box. After acquiring the anchor boxes for a particular object, the anchor boxes with score
values higher than the set confidence threshold values are further transformed to the final
predicted bounding box using a parameter regression function.

According to Redmon and Farhadi [33], YOLO adopted the following computation in
transforming the anchor box to the predicted bounding box. One anchor box generates one
bounding box with four parameters:

bx = σ(tx) + cx (1)

by = σ
(
ty
)
+ cy (2)

bw = petw
w (3)

bh = p
eth
h #(4) (4)

• tx , ty , tw , th are coordinates of predicted bounding box in terms of x position, y
position, width, and height, which are not finalized bounding box coordinates.

• cx , cy are the offset of cell from the top left corner of the image.
• pw is the width and ph is the height of the predicted prior anchor box.
• σ is the sigmoid function applied to constrain the offset range between 0 and 1.
• bx , by , bw , bh are the finalized parameters of bounding box, where bx and by are the

center coordinates, bw and bh are the width and height respectively.

Figure 4a shows an instance of prediction result generated by YOLOv4-Tiny.
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4.2. Three-Dimensional (3D) Pose Estimation

From Section 4.1, we save the predicted bounding box as SROI . We then recover the
3D pose of the object to conduct dynamic tracking by the following information: (1) the
coordinates of the object on 2D frame, (2) the depth information retrieved from the stereo
camera. We first generate an inner rectangle Si by shrinking SROI with scaling factor θ:

SROI =
[
cx cy w h

]
, (5)

Si =
[
cx cy θw θh

]
. (6)

The acquired Si, as shown in Figure 4b, will then play as the region of interest (ROI)
on depth for depth information acquisition. From the depth image acquired by the stereo
camera, we first filtered out the unfilled pixels and averaged the remaining depth data
in Si. We then assumed the averaged depth value s as the distance between the observer
and the target object. Subsequently, with the bounding boxes coordination, we conducted
coordination transformation and obtained the relative pose from the camera and the global
pose in the world frame. The frame transformation equations are as follows:

s[u v]T = K·
[

XC
i

1

]
, (7)

[
XW

i
1

]
= TW

B TB
C

[
XC

i
1

]
, TW

B TB
C ∈ SO(3) , (8)

where u and v are the pixel coordination of the Si, K is the intrinsic camera matrix, XC
i is

the object pose vector in camera frame, while XW
i being the object pose vector in the world

frame. In particular, the transformation matrices are:

TB
C =


0 0 1 0
−1 0 0 0
0 −1 0 0
0 0 0 1

 (9)

TW
B =


r11 r12
r21 r22

r13 ox
r23 oy

r31 r32
0 0

r33 oz
0 1

, (10)

in which rij is the element in the rotation matrix of the attitude of the observer, and ox, oy , oz
are the current position of observer (UAV) with respect to the world frame. The rotation of a
coordinate frame is usually expressed in either rotation matrix or quaternion representation.

5. Filter Based Tracking and UAV Maneuvers
5.1. Relative Pose Estimation

We utilized the YOLOv4-Tiny framework as it possesses a good trade-off between
speed and accuracy. Nevertheless, the higher FPS also indicates that the accuracy has
been, to some extent, yielded. Furthermore, as both the states of the target object and the
quadrotor are dynamic, the pose estimation based on Section 4 is considered insufficiently
robust. In a surveillance mission, it is not guaranteed that the target object could always
be captured in the FoV, as there might be false positive or false negative results; and occa-
sionally, partial or full occlusion might also occur. In particular, although severe occlusions
might not be resolved with such a method, it is deemed that the proposed method would
suffice to deal with occlusions that occurred within a short duration of time. To address the
above issues, we utilized the Kalman filter to increase the tracking performance.
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5.1.1. Kalman Filter

As the Kalman filter is frequently substantiated to be a sufficiently robust solution in
the robotics field, it is chosen to be a critical module in the proposed system.

We first established the state vector of the object with the relative positions and
velocities from the camera, i.e., the x, y, and z coordinates in the camera coordination frame.
The state-space vector is shown as:

xk = [pk, uk]
T , (11)

where x(k) ∈ R6 and T represents the matrix transpose. We further considered that the
target’s dynamic state varied with nearly constant velocity (NCV), and assumed that all the
states, measurements, and noises followed the Gaussian distribution. Therefore, we could
then describe the object’s dynamic system in the form of Kalman filter. The following content
shows the discrete linear equation of the target object, and the measurement expression:

xk = A(∆t)xk−1 + wk (12)

zk = Hxk + vk , (13)

in which A(∆t) is the transition matrix, wk is the process noise, zk is the measurement
from the detection module, H is the measurement matrix, and vk is the measurement
noise. The system can then be further divided into two steps: time update (prediction) and
measurement update (correction).

Time update (prediction):

x̂−k = Ax̂k−1 + Buk−1 (14)

P−k = APK−1 AT + Q. (15)

Measurement update (correction):

Kk = P−k HT
(

HP−k HT + R
)−1

(16)

x̂k = x̂−k + Kk
(
zk − Hx̂−k

)
(17)

Pk = (1− Kk H)P−k . (18)

Specifically,
Q = E

[
wk wT

k

]
(19)

R = E
[
vk vT

k

]
. (20)

The two matrices (Q and R) are the covariance matrices of noises (wk and vk), and Pk
is the error covariance matrix.

The Kalman filter mainly resolves the problem of the estimation of states; from the
above equations, the objective is to obtain the filtered result x̂k at every discrete time step k.
Mostly, the filter makes educated estimations based upon the following: (1) the predictions
(x̂−k ) from previous states, (2) the measurement (zk) at each frame (elucidated in Section 4),
and (3) the optimal Kalman gain (Kk). The process is iterative, and its performance has
been empirically determined to be satisfactory in the designed surveillance UAV system,
whose results will be presented in Section 6.

5.1.2. Overall 3D Tracking Algorithm

To track the target object, the system will execute the following working pipeline.
After the video stream frame is retrieved, the deep learning model will generate bounding
boxes with every object having a corresponding confidence score. Nevertheless, only the
bounding box with the target object class will be tracked. If multiple objects are found,
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the designed software will only consider the bounding box with the largest ROI area and
discard the rest. Due to the relatively lower mAP of YOLOv4-Tiny, to avoid false positive
detection the system will only take the bounding boxes with a confidence score higher than
0.75 as direct information output. Those outputs with a confidence score lower than 0.75
will be fed to the update equation of the Kalman filter correction step shown in Equation
(17). The system will then take the posterior estimates as the final output. The threshold of
0.75 is empirically determined. Nevertheless, in some scenarios, temporary object occlusion
or false negative detections could happen, and the system might lose track of the object.
In such a situation, the Algorithm 1 will take the prior results from the prediction step
and deem it as the perception result. The following pseudo-code shows the overall 3D
tracking algorithm:

Algorithm 1: 3D Yolo-KF-Tracking

Notation: object states xk, measurement zk, Kalman filter KF, image set F
Input: image F
while true do

Object-Detection (F)
if object detected then

trigger and initiate KF
break

else
continue

end if
end while
while true do

KF.predict()
Object-Detection (F)
if object detected then

if confidence score > 0.75 then
x̂k = zk
KF.update (zk)

else
KF.update (zk)
x̂k = KF.update (zk)

end if
else

x̂k = KF.update (KF.predict())
end if
Output: x̂k (posteriori estimate)
continue

end while

5.2. Finite State Machine Definition

In a surveillance mission, to capture the target object within the FoV, the UAV com-
putes the relative position of the target object from its FoV and determine the reactional
maneuver. In particular, all the relative positions are in the UAV’s camera coordination
system. By determining the moving trend of the target object on each of the three axes,
the UAV would define its states, formulating a finite state machine (FSM). Specifically, the
system is designed to have two parallel state machines: one for resolving the attitude and
altitude of the camera FoV, and the other for modifying the relative distance between UAV
and the target. In addition, we have designed a position controller for the planning model
of the proposed system, where the UAV will be following a series of discrete waypoints
generated by the state machine.

The following items are the state definitions and the corresponding UAV maneuver
based on the sequence of the states in a surveillance mission.
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Initialization: starting from ground, the camera is turned on when the whole system
is being initialized. The UAV will then take off to a certain altitude and start to search for
the target object.

Sway and Search: after going airborne, the UAV will then sway for 360 degrees to
search for the object. To avoid a severe motion blur that affects the perception performance,
the angular velocity of the swaying is set to be conservatively low, which is constrained to
be lower than Vθmax .

Track and Hover: after locating and locking the target, the UAV will enter “track
and hover” mode. During this stage, the system will be based on the consecutive frames
from the camera input and determine whether the target is dynamic or not. If the target is
observed as “static”, the surveillance UAV will continue to hover.

Track and Sway: for a surveillance assignment, we consider that the center axis of the
camera should be aligned with the target. By doing so, the system can prevent the target
from exiting the FoV in a short duration of time. Therefore, when being in the state of
“track and hover”, if the target is observed as “horizontally dynamic”, the UAV will try to
sway around, keeping the target object staying within the vicinity of the center. However,
in order not to exceed the dynamic feasibility of the UAV, the angular velocity has also
been restricted to be less than Vθmax .

Track and Climb or Descend: similar to the above, the UAV will decide to climb or
descend, depending on the relative position to the target object. The vertical velocity is
limited within Vzmax to maneuver within the dynamic constraints.

Track and Forward or Backward: to guarantee a collision-free flight, the UAV should
maintain a certain safety distance Rsa f e with the target object. Nevertheless, in order not
to lose the object, it is deemed that the UAV should be within a surveillance radius Rsur.
Therefore, based on the inputs from the stereo camera, the system will calculate the depth
data and determine whether the gap between them lies in the scope of Rsa f e and Rsur and
further decide the reactional movement. The moving velocity, analogously, should not
exceed Vxmax .

The “x” and “z” in the subscript indicate the X and Z axis in the body frame. The
system could function simultaneously in one or more states. For instance, if the target
object is moving further, whilst travelling leftwards from the camera view, the system will
be in both “Track and Sway” and “Track and Forward”.

Lost and Await: it is not guaranteed that the object could always be tracked. Therefore,
we have designed a fail-safe mechanism. If the object is lost for too many frames, the UAV
will enter the mode “lost and await” and hover until the object returns to FoV, or land after
the waiting time exceeds the threshold.

Land: the UAV will land after the target object is lost for too many frames. It will try
to return to its home position and land.

6. Experiment Results and Discussions

To validate the proposed UAV system, we conducted experiments through a strategy
of gradual phases. Before the fast development of deep learning, object tracking has usually
been separately discussed from object detection. Nonetheless, with the rise of robust detec-
tors, researchers have increasingly deployed the “tracking by detection” method, and this
has led to a convergence of difference between object detection and object tracking fields.
Therefore, conventionally, for recent object tracking works, only tracking performance will
be discussed. Nevertheless, as this work is based upon a self-generated dataset, we assert
that it is necessary to discuss the training result of our detection model.

In this section, we first assessed the performance of the trained model on a Jetson
TX2 onboard computer, where the YOLOv4-Tiny model was trained via the Darknet open-
source framework through Google Colaboratory. As mentioned, we then observed the
robustness of the proposed tracking algorithm on a 2D streaming video by exploiting
several quantitative analysis techniques for object tracking. Lastly, we carried out intensive
flight tests on a self-assembled quadrotor platform and evaluated the overall performance.
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6.1. Training Result of YOLOv4-Tiny

The surveillance task starts with object detection. We employed the YOLOv4-Tiny
model to perform object detection. The YOLOv4-Tiny model will output a prediction
bounding box which classifies the detected object into a certain category and indicates
the location of that object. The goal of the experiments is to validate the object detection
performance using our trained model, which is critical for subsequent UAV pose estimation.
The quality of using a ‘YOLO’ framework in operating real-time object detection as well as
3D pose estimation significantly depends on the training result of the YOLOv4-Tiny model
on a custom dataset. Two factors, detection speed and accuracy, play dominant roles in
judging the model training result. The model training process lasted for 6000 iterations
at which the training loss did not decline any further. Since different neural network
resolutions could influence the model precision, we trained our YOLOv4-Tiny model with
different resolutions (i.e., 320 ×320, 416× 416, 512× 512, 608× 608) to evaluate the best
model performance. The comparison of the four input resolutions in terms of accuracy and
detection speed is demonstrated in Table 1. Meanwhile, since the UAV surveillance task
relies on real-time perception solutions to address object detection and tracking problems,
the detection speed and accuracy need to be balanced such that the UAV can consistently
detect and track the object with negligible delay and sufficient accuracy. Thus, a comparison
between YOLOv4-Tiny and YOYLOv4 models of the same network resolution was made
to examine accuracy and speed. Table 1 summarizes the training results.

Table 1. Performances of YOLOv4-Tiny and YOLOv4 with respect to different resolutions.

Method Backbone Size mAP@0.50 (AP50) FPS

YOLOv4-Tiny CSPDarknet-53-tiny

320 × 320 74.85% 16.63
416 × 416 77.21% 16.19
512 × 512 79.36% 16.31
608 × 608 80.20% 14.34

YOLOv4 CSPDarknet-53 416 × 416 97.09% 3.16

Notably, larger input resolutions will increase the best possible mAP but will inevitably
slow down the training process and the detection speed. Thus, it is not necessary to train
higher input resolution as we achieved acceptable speed and accuracy at 608× 608, at
which the mAP is 80.20% with intersection of union threshold of 0.50 (AP50). However,
its FPS is slightly lower than that of resolution 512× 512. Furthermore, when comparing
YOLOv4-Tiny to YOLOv4 model, we conclude that the YOLOv4-Tiny model generates
a moderately lower mAP but much higher FPS. Since the object detection speed (FPS)
should be of more importance in real-time autopilot operation, we therefore chose the
YOLOv4-Tiny model with the resolution 512× 512 as a good balance between detection
accuracy and speed.

In Section 4.1.1, it was asserted that 6000 negative images play a crucial role in the
process of custom model training. Therefore, a separated model of YOLOv4-Tiny was
trained in order to validate the statement. From Table 2, it could be observed that mAP
without the background pictures (negative images) turned out to be lower in all sizes of
models, from 320 × 320 to 608 × 608.

Table 2. Comparison between models trained with/without negative images.

Backbone Size mAP@0.50 (AP50)
with Negative Images

mAP@0.50 (AP50)
without Negative Images

CSPDarknet-53-tiny

320 × 320 74.85% 59.97%
416 × 416 77.21% 62.87%
512 × 512 79.36% 66.08%
608 × 608 80.20% 66.40%
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Once the training process was completed, we assessed the model performance of
detecting target objects on real-time videos captured on Intel RealSense D435i stereo
camera. The trained model was robust under various environments and low false positives
and low false negatives were found in the detection results. After assuring the validity of
our trained model, the object tracking was then successively assessed.

6.2. Tracking Performance on Target Object

Some of the most common ways to evaluate the tracking performance of an algorithm
are precision plots and success plots [47]. Therefore, the center error between the ground
truth and tracked targets as well as the IoU (intersection over union) values were measured
and calculated. Nevertheless, it is deemed to be unsuitable if all benchmark algorithms
are compared with this work, as: (1) the camera could be constantly moving and giving
occasional severe motion blur, while most of the other proposed research were designed
with a video stream with the FoV being fixed; and (2) the work focuses on a customizable
surveillance UAV system, in which it is preferred to assess the system and its algorithm on
an embedded computation unit (with a suitable real-time speed); however, many of the
state-of-the-art methods require high computation power. Hence, we only compared our
algorithm with Opromolla et al. [48] and Peixoto et al. [49], where they deployed similar
tracking techniques based on the YOLO detector. The compared system was able to be
executed on the designed hardware architecture in real time.

Robustness of the tracking module was validated the on 2D video stream, in which
the custom object was fully captured in most frames. The videos mainly consisted of
several pre-recorded clips retrieved manually on campus prior to our flight tests, with
the camera’s ego-motion being both static and dynamic. It is deemed that the target
object in the video has been sufficiently exposed to different environmental backgrounds,
illumination conditions, and different capture angles as well as distances. The video frames
input was 640 × 480 and a total of 2767 frames were collected. The ground truth was
labelled manually during the image post-processing.

We first calculate the center location error (CLE), i.e., the Euclidian distance between
ground truth and tracker, by the following equation, with R being the bounding boxes of
ground truth and tracker, and X being the states of the bounding boxes:

∆ (RG, RT) = ‖XG − XT‖ (21)

We then plot the precision plot of one-pass evaluation (OPE), where the x-axis is the
center location error threshold, and y being the percentage of the frames whose center
distance lies within the threshold. Additionally, we consider the precision score at threshold
value 20 as the final representation of precision. Figure 5 shows the precision plot of OPE.
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As observed, the proposed method has outperformed the comparison set, as it
achieved a precision rate of 76.54% at CLE threshold equals to 20, whereas the other
being 72.97%. During the experiments, our method shows higher robustness for target
object, as it managed to continuously follow the object for most of the time, even when
object is occluded, or being captured with occurrence of motion blur. The success plot of
OPE by calculating the IoU by

S =
|RG ∩ RT |
RG ∪ RT

(22)

is shown in Figure 6. Similar to precision plots, the x-axis of success plot is the threshold
of IoU value, whilst the y axis being the percentage of frames that exceed this threshold.
Figure 6 also indicates that our system has outperformed the other, as the area under curve
(AUC), or average precision (AP) has been calculated to be higher than the other, being
72.58% and 63.63%, respectively.
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As we retrieved the depth information based on the bounding boxes, both center
location and region of interested (ROI) generated by the tracking algorithm matter. From
above, the proposed tracking algorithm achieves an acceptable precision rate and average
precision that guarantees a certain robustness.

Moreover, as the UAV surveillance system could be either hovering, swaying or
producing linear motion, it is required that the performance difference between static and
dynamic states should not be significantly high. Table 3 further compares the performance
based on the root mean square error (RMSE) of the center location when the ego-motion of
the camera is dynamically different.

Table 3. Comparison of root mean square error (RMSE) between static and dynamic camera ego-motion.

Experiments No. of Consecutive Frames Camera Ego-Motion RMSE (Pixels)

Trial 1 487 Static 14.30
Trial 2 356 Static 8.09
Trial 3 220 Static 9.37
Trial 4 705 Dynamic 17.88
Trial 5 466 Dynamic 16.21
Trial 6 533 Dynamic 18.47
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It can be observed that although the RMSE values are apparently affected by the
camera’s motion, as the RMSE values for trial 4, 5, and 6 are higher than the static trials.
The value between the two is considered to be controllably near, as center location RMSE
are all lesser than threshold = 20. Hence, we conclude that the overall discrepancies lie in
an acceptable scope, making our system sufficiently robust under different state machines.

6.3. Flight Experiment in Indoor Environment Aided with External Locolization

The flight tests were conducted under a Vicon arena with the size of 6 m × 4.6 m. To
simulate a surveillance mission, we have assigned the UAV to search, track, and follow the
“Pooh” class object. During the experiment, we tried to move the target object around while
the quadrotor maneuvered in order to track and follow the object. Both object and camera
were constantly moving such that the difficulty of pose estimation was raised. In addition,
we also included occlusion scenarios, as we intentionally trespassed the space between the
UAV and the object. Furthermore, due to the cluttered environment, the parameters were
conservatively set for safety reasons. Table 4 shows the values of the tuned parameters.

Table 4. Defined parameters for flight test.

Parameters Value

θ 0.15
Vθmax 0.2 rad/s
Vzmax 0.4 m/s
Vxmax 0.4 m/s
Rsa f e 2.25 m
Rsur 3.25 m

As this work focused on integrating a perception to reaction, end-to-end surveillance
system, we first validated the overall flight behavior as shown in Figures 7–9. During
intensive trials, finite state machines were executed normally, even when the objects were
occluded or not detected (false negative detections). The experiments are recorded and
attached as the Supplementary Materials Video online.
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To further evaluate the system, we compared the estimated dynamic position and the
ground truth of the tracked object. As shown in Figures 10 and 11, the system was able
to track the object’s pose in the 3D space for most of the time. Despite having jittering
and occasional drifts, the proposed tracking algorithm could still relocate the object after
several frames.
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Figure 11. Error throughout the mission time.

In Figure 11, the error stays within 0.4 m in all axes of the world frame for most of the
time. We further calculate the RMSE and MAE with results shown in Table 5.

Table 5. Calculated RSME and mean absolute error (MAE) of the dynamic object position estimation.

Error Evaluation X (m) Y (m) Z (m)

RMSE 0.1322 m 0.1072 m 0.0896 m
MAE 0.1033 m 0.0812 m 0.0728 m

Compared to other 3D object pose state-of-the-art estimation systems [22,50], which
focused on static objects instead of dynamic, the proposed method possesses slightly higher
error but is robust enough for real-time dynamic position estimation. Additionally, during
a surveillance mission, as the distance between the UAV and the target object might not be
consistent, accuracy discrepancies under different object distances were further analyzed.
As shown in Table 6, it can be concluded that the performance proposed method does not
significantly deteriorate when the object distance is increased.



Sensors 2021, 21, 7888 19 of 22

Table 6. Calculated RSME and MAE of the dynamic object position estimation with object distances
being different.

Object Distance 1–3 m 8–10 m

Error Evaluation X (m) Y (m) Z (m) X (m) Y (m) Z (m)

RMSE 0.1322 m 0.1072 m 0.0896 m 0.1850 m 0.1286 m 0.1116 m
MAE 0.1033 m 0.0812 m 0.0728 m 0.1172 m 0.1019 m 0.1002 m

To achieve a collision-free surveillance mission flight, we have defined the state
machines in Section 5.2. For further evaluation, we then plotted the clearance distance
throughout the flight. It is believed that the distance between the UAV and the target object
should be maintained within Rsa f e and Rsur, which are respectively 2.25 m and 3.25 m.
Figure 12 shows the relative distance between the two.
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As observed from Figure 11, most of the time the quadrotor stays within the scope of
Rsa f e and Rsur. Although the quadrotor may sometimes exceed the pre-defined boundaries
during the flight test, it still successfully fell back after a while. We consider the sparse over-
shooting periods, which were caused by the abrupt movement of the target object, would
not significantly affect the overall performance and conclude that the proposed method
could achieve a real-time, maneuverable and autonomous UAV surveillance system.

7. Conclusions

In this work, we established an autonomous UAV tracking system for assisting surveil-
lance using a deep learning-based approach. We employed the YOLOv4-Tiny to train a
model for object detection based on our custom dataset. A Kalman filter was leveraged to
aid the YOLOv4-Tiny for 3D pose estimation to increase the tracking performance. The
Kalman filter was also responsible for tackling the common problems in aerial tracking,
such as false positive or false negative detection and occasional occlusions. Additionally, an
UAV maneuver state machine was incorporated to conclude the fully autonomous system.
The proposed autonomous UAV system does not require prior knowledge regarding the
external environment or target objects. System modules were evaluated through extensive
experiments in both virtual and real environments. The experimental results have validated
the system feasibility and robustness for object surveillance tracking.
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For future work, the vision-based and GNSS-based positioning systems will be merged
into the proposed UAV system. The aforementioned independent localization/positioning
component allows the proposed system to carry our missions in both indoor and outdoor
environments. In addition, it is also considered that more work on the path planning
module could be extended, in which the trajectory should be optimized based upon the fol-
lowing: target motion prediction, dynamic and static obstacles constraints, as well as UAV
robot physical limitations. Such work will secure the target object within the UAV’s camera
FoV with a higher likelihood (occlusions or loss of target reduced), whilst performing a
collision-free mission, augmenting the applicability of the UAV tracking system.

Supplementary Materials: The following are available online at https://youtu.be/tY16YnZQoB4,
https://youtu.be/vO2N5aY1nE4, Video: Dynamic Object Tracking on Autonomous UAV System:
for Surveillance Applications, https://github.com/HKPolyU-UAV/AUTO (accessed on 29 October
2021), Source code.
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