











































































































theunitcomplexmemberscanexampleofengine

w

noteenaxya son

t.si1 y r
arenoinimin
enesamese

i Éoperaregroup
meant zag consonant rtr sm.itpology unitancees apology circlesoca
cements zcosotis.no anemones Rscootcasinoverse compare diverse
mpsreron a a ocomposeron air

Xo t eingroups

ineerpene

Thither integrate
disterenera

compose mastermannoncerantyTiffin
inner

obreces

egroupdefinition

roupsetaseementsexisziwanna se
money e ex x isina
Inverse xx xaxteis.no
gpea.seae x.cr.zsex.xs.zinnoncommmexsx.xnatisaeiegroup

groupenarisaesoasmoommanitoed

gasman
onasmooinmair.ee

enseman spikes

aeieguupsaerssycaax.ms smoothmaureen
nupaction
aanupcanaceanoinersetvonan.ru
eement

Givenx c arm issuchenat

osminiseneneracan e v v
compatiblewcomposiennexits.mx.ca.us

opoeogyoscreacony
www.sa sex s

gg gypgfwnap.nmgeoasi e.g ongoes
d

mated angenespaceeaponentremap expsoontangentwomaniser eg on Socalenwrapeyesegetenginesubphere

R'ri er Er insistP É j mI
am
tansenspace per was son

rememberwearederiving.ciaegemr2 ii ewsxesac

mm

mm

midmapping
event

Eet'd swaxesacs
an exponntiemanin

i r a wee

mm

as in zizincox t case sax w.eitwze.tw
aces aexpense a rose Isitsosussand rcesexpcwxesiwe.io utwxeoxwm.ammyeonexpansion Textentiemating

TjxM
M s at a r i wax itaangentspace ios is iisaveeanspaeeexpcios stio cior.tn

qq.gggjg.mg
y

gggg.gg
andaeons as i ruse
amensinosasenespace stio a iosition scioutsee.co n s eson

soso.sxsino.es gjoeeswxenegw.otboeoseeeeraexpcasxes.Taoaespaeee.s soso.is.no
made onap resexpcox

n expmap s expciasee wrappingastring
so oversurface erealgebraseesa Ier

on

M
expressedamsecess means

sumseumenes easiers ineir season
ueaesebra easieriswin 1careesian exponentialmappingsummary evasions
w ur causes.am
isomorphism

Hat win ecqvee w we ian operas
Gena o

gig
e r s venomasoes as.ge am

gÉrear o wa a noseper crisis na ree cortexay my pcareesian as exponential

I Jesus inI I jweagebraunenia s eogtc.su
xwx.expasxxeu.amw x.ggJy
gg

F
tree w w

expressed

Haewaw
















































































































oneman

g

E
posesunknown beacons knownY

xxwaxyxox x neeDeseo Jacobinsten P Esexology
beers

Txu ix tix
motionm.ae coarianceEKeprearceronI amain y you.ae

gliederictms
s Eiiomn Xi cameras

exponential

w ivco.rs erecorrection
d

measurementmodel say be aperederinesyenexsxt.b.tv K preempting

É if
ms

s're.is
x x Tapdaeigusingpasaulosoncegroups u wearserooperators pep Kamar ismoreDerivation

perorations

errors duringbundleadjustmenton IT eseecrax4onwww.s oaesineopinweemoaeeaura or e 3 3B I jjsini kepi soon
T oathsimsises

n ernxmtsEYes.tcxeyos e.mn

T.it
wsssexsiscxex.ca

at retinatiigitenevaiablexoxexix e picaps

xsx.zgi.gg

Y
j Ii xix.xi.xo svmxix xx.su keer cake c Eimemes meanies 1511 1 Eza 3 meine meineriot in E a
_r nor toyem timeex masses est en skip

incense cope yes se eu getaee.Btes rotsI assees 7 esecsera o u Etax tocrease efr syz.ecmeantthisisalsotwist
solutionofone

t

when const

menexperesmito
misexpene

assumes

summary
Mexpat Econope gg ÉIitg ggnotena

Loser
mma on coger e

my

l
pertubationevery

i
vass.no ay oIoxx T

t xox eigenstates excovarianceosx
p eat.tt

mama IT.jo
IjjitIP esixxs.com s

six p sa
J EDx
Py T.px.TT

I p
Here ex.gsi op L pin

L
as EIII
a L
I L Ixmyoexpiwesxu xoocwidy lw.de d

p s É
o a I












































































































LieTheory mathematics
sonceronsuenas
mapstate

givenasuncion mapstate

FAILiesegebiavelocitiesveehat signal sixsexedweredealingwithnoneuceraeancomponents
www.ngoperatonscestimannoptinisaeionsanoseoconseram xoxi xioxe weanuperativesbaranya
nonEuclideanvectors mare imposeconstrains womensoperation iscompositionoperator einenmappingsong it intermsostentansenespace

iii iegwww.pnngseaasavriabee namedbysomesomeneeperation rightoperation eocayTxs textmg xoxtx.xio vnx.eexoxnardtoimposeasoningorinisation eatoperationgeobaytag testxxtxixo emxi.vexoaegebnasowawrecombinationof aset
Fercern canbeexpressedmeinearcombination stochasticprocess

optimization

vytn eriei.wnereei.isthebasementsAxa ra eseneranorms Lemma
one nacreeoperanon seamen

compressaxioms ab cea one Jacobian

ay

s cosme a best ornaments in
a associating.cabs c acbcs one

ums scenery eealexa.ae a

group abeliangroup oexponentialmapping
ringctwooperations abeliasing execs m six explains
seed it operations Tansen enema

my

wrapegged manitou
a Logarithmmapping

manicwearspacersaside ages S mimeogexs
unwrapping
exponential mapping native

amie toeachelementin seta exponential

tassionsuniqueelement Exporm six expert
in asetB Logarithm

Loge S RMTregexs BI fas beBvaea
properties a
expect y ensue

3
can

emetine InI actin oploslmmsoperatoreggqgcgeobees.Bannumanya y xootxxoexpcotxsegsusea.veeasement.no

everyBnassome

ex wgcxt.genasaeceases
y tox expcotgoxeg

Bijective
simeaneouseyingecereesuseerve
a Bpotency Ij

mannnn

he oxyea

FAIhomomorphism
amapmorphismthatpreserveemgroup
iscalledhomomorphism

FAI isomorphism
isomorphism

FAEgroupaction
gas axv rig.us vera A

i i ing n
she group liealgebra

exegesis isspacei

ayy

ndimensionamanisoeeisaopoeosioespaeemanisoea.o
eaaep.ii resembleseuclideanspace mayors anarcane.mx no

embeddedmannermansionspace enter basicallyitisatomeocurved
snootnespineeaseass

Yarantactioniseineanomommenism neaajoint
osmanyanstains rn egoteinencharacteristic aeronreeds

netranssorman

FAIregroup ax es c
abar guanorxexs.snii.ionep aan etscangerspace

enemyaaxcatxn.be a
copencoveroso

aaaxcaxstbaa.com
on aaaaa mmmm.amaxcaaycessaaxscxsoeumenesotgx aaxoycamEiggp
ggp
samsarasamey a e

inverse a x ammo.name coanossEjEemaIYIerEntIecomposition unssoman rnMansioncocoahappenisnappens

Facteangentspaceeceaegesraisis.geesiara xtmegaaxxe.gtangentspace x txgs.me gEibiei Faepropertiesweaegesraites samemanis.eesoso.a.tn aso aaaxxcx.xxszmcssgs.sc oxorcaa.es xEm mirrors masses am aanaanam
vort v.t.mnasys.nsscos.uznmoadxyaaxaayease

Gaarea

g

stonemasons a qcos.iesoaring
artorocreea can t a measure.ca axno.mg

tIT it114 I.I area axgqrg.proiyya on rarei












































































































whatistopology
recall metricspaces Brca

in oCascaraasana
dm operbaces

openbar openset opensfees

I
qq.instgclosedset

compactnessgig

Face
Atopologicalspace x 1139577

Bastide's

consistsof aset commennoneying p
a

x
Y'epoeogyonx

xer
3711 uneExcaeai itams Iis Foggier.ge

ed
a.a.xsonaaz

oetinxoet Exsnxa.ir scalledatopologyonx
usassazCameron weusuallyusex tooxxet indicatemeset omitux xe mesubscriptxingsauxxen

peptideisotopes bysayingnaturalspaceixasIsaias
egmetricspacesixas ix as

e mn

x dissentdistance I opensetsx swoonnight rambyddeterminethesame
topologycrndecx.us ginsgigresin
overKc Koresunrmsonvaeamme
sesameapologyonvying

Jain



1

A micro Lie theory
for state estimation in robotics

Joan Solà, Jeremie Deray, Dinesh Atchuthan

Abstract—A Lie group is an old mathematical abstract object
dating back to the XIX century, when mathematician Sophus Lie
laid the foundations of the theory of continuous transformation
groups. Its influence has spread over diverse areas of science and
technology many years later. In robotics, we are recently expe-
riencing an important trend in its usage, at least in the fields of
estimation, and particularly in motion estimation for navigation.
Yet for a vast majority of roboticians, Lie groups are highly
abstract constructions and therefore difficult to understand and
to use.

In estimation for robotics it is often not necessary to exploit
the full capacity of the theory, and therefore an effort of selection
of materials is required. In this paper, we will walk through the
most basic principles of the Lie theory, with the aim of conveying
clear and useful ideas, and leave a significant corpus of the Lie
theory behind. Even with this mutilation, the material included
here has proven to be extremely useful in modern estimation
algorithms for robotics, especially in the fields of SLAM, visual
odometry, and the like.

Alongside this micro Lie theory, we provide a chapter with
a few application examples, and a vast reference of formulas
for the major Lie groups used in robotics, including most
Jacobian matrices and the way to easily manipulate them. We
also present a new C++ template-only library implementing all
the functionality described here.

I. INTRODUCTION

There has been a remarkable effort in the last years in
the robotics community to formulate estimation problems
properly. This is motivated by an increasing demand for
precision, consistency and stability of the solutions. Indeed,
proper modeling of the states and measurements, the functions
relating them, and their uncertainties, is crucial to achieving
these goals. This has led to designs involving what has been
known as ‘manifolds’, which in this context are no less
than the smooth topologic surfaces of the Lie groups where
the state representations evolve. Relying on the Lie theory
(LT) we are able to construct a rigorous calculus corpus to
handle uncertainties, derivatives and integrals with precision
and ease. Typically, these works have focused on the well-
known manifolds of rotation SO(3) and rigid motion SE(3).

When being introduced to Lie groups for the first time, it is
important to try to regard them from different points of view.
The topological viewpoint, see Fig. 1, involves the shape of
the manifold and conveys powerful intuitions of its relation
to the tangent space and the exponential map. The algebraic
viewpoint involves the group operations and their concrete
realization, allowing the exploitation of algebraic properties
to develop closed-form formulas or to simplify them. The
geometrical viewpoint, particularly useful in robotics, asso-
ciates group elements to the position, velocity, orientation,

TEM
E

exp(⌧1)

exp(⌧2)

⌧2

⌧1

M

vt

exp(vt)

log(X3)
X3

Figure 1. Representation of the relation between the Lie group and the Lie
algebra. The Lie algebra TEM (red plane) is the tangent space to the Lie
group’s manifold M (here represented as a blue sphere) at the identity E .
Through the exponential map, each straight path vt through the origin on
the Lie algebra produces a path exp(vt) around the manifold which runs
along the respective geodesic. Conversely, each element of the group has
an equivalent in the Lie algebra. This relation is so profound that (nearly)
all operations in the group, which is curved and nonlinear, have an exact
equivalent in the Lie algebra, which is a linear vector space. Though the
sphere in R

3 is not a Lie group (we just use it as a representation that can be
drawn on paper), that in R

4 is, and describes the group of unit quaternions
—see Fig. 4 and Ex. 5.

and/or other modifications of bodies or reference frames. The
origin frame may be identified with the group’s identity, and
any other point on the manifold represents a certain ‘local’
frame. By resorting to these analogies, many mathematical
abstractions of the LT can be brought closer to intuitive
notions in vector spaces, geometry, kinematics, and other more
classical fields.

Lie theory is by no means simple. To grasp a minimum
idea of what LT can be, we may consider the following
three references. First, Abbaspour’s “Basic Lie theory” [1]
comprises more than 400 pages. With a similar title, Howe’s
“Very basic Lie theory” [2] comprises 24 (dense) pages, and
is sometimes considered a must-read introduction. Finally,
the more modern and often celebrated Stillwell’s “Naive
Lie theory” [3] comprises more than 200 pages. With such
precedents labeled as ‘basic’, ‘very basic’ and ‘naive’, the aim
of this paper at merely 17 pages is to simplify Lie theory even
more (thus our adjective ‘micro’ in the title). This we do in
two ways. First, we select a small subset of material from
the LT. This subset is so small that it merely explores the
potential of LT. However, it appears very useful for uncertainty
management in the kind of estimation problems we deal with
in robotics (e.g. inertial pre-integration, odometry and SLAM,
visual servoing, and the like), thus enabling elegant and
rigorous designs of optimal optimizers. Second, we explain
it in a didactical way, with plenty of redundancy so as to

ar
X

iv
:1

81
2.

01
53

7v
9 

 [c
s.R

O
]  

8 
D

ec
 2

02
1








































































































r

notethatmanifoldissth are topologiallyoffhand

11Eur

a
Eg

0

so



2

reduce the entry gap to LT even more, which we believe is
still needed. That is, we insist on the efforts in this direction
of, to name a paradigmatic title, Stillwell’s [3], and provide
yet a more simplified version. The main text body is generic,
though we try to keep the abstraction level to a minimum.
Inserted examples serve as a grounding base for the general
concepts when applied to known groups (rotation and motion
matrices, quaternions, etc.). Also, plenty of figures with very
verbose captions re-explain the same concepts once again. We
put special attention to the computation of Jacobians (a topic
that is not treated in [3]), which are essential for most optimal
estimators and the source of much trouble when designing
new algorithms. We provide a chapter with some applicative
examples for robot localization and mapping, implementing
EKF and nonlinear optimization algorithms based on LT. And
finally, several appendices contain ample reference for the
most relevant details of the most commonly used groups
in robotics: unit complex numbers, quaternions, 2D and 3D
rotation matrices, 2D and 3D rigid motion matrices, and the
trivial translation groups.

Yet our most important simplification to Lie theory is in
terms of scope. The following passage from Howe [2] may
serve us to illustrate what we leave behind: “The essential
phenomenon of Lie theory is that one may associate in a
natural way to a Lie group G its Lie algebra g. The Lie algebra
g is first of all a vector space and secondly is endowed with
a bilinear nonassociative product called the Lie bracket [...].
Amazingly, the group G is almost completely determined by g
and its Lie bracket. Thus for many purposes one can replace
G with g. Since G is a complicated nonlinear object and g
is just a vector space, it is usually vastly simpler to work
with g. [...] This is one source of the power of Lie theory.”
In [3], Stillwell even speaks of “the miracle of Lie theory”.
In this work, we will effectively relegate the Lie algebra to
a second plane in favor of its equivalent vector space R

n,
and will not introduce the Lie bracket at all. Therefore, the
connection between the Lie group and its Lie algebra will not
be made here as profound as it should. Our position is that,
given the target application areas that we foresee, this material
is often not necessary. Moreover, if included, then we would
fail in the objective of being clear and useful, because the
reader would have to go into mathematical concepts that, by
their abstraction or subtleness, are unnecessarily complicated.

Our effort is in line with other recent works on the sub-
ject [4], [5], [6], which have also identified this need of
bringing the LT closer to the roboticist. Our approach aims
at appearing familiar to the target audience of this paper: an
audience that is skilled in state estimation (Kalman filtering,
graph-based optimization, and the like), but not yet familiar
with the theoretical corpus of the Lie theory. We have for this
taken some initiatives concerning notation, especially in the
definition of the derivative, bringing it close to the vectorial
counterparts, thus making the chain rule clearly visible. As
said, we opted to practically avoid the material proper to the
Lie algebra, and prefer instead to work on its isomorphic tan-
gent vector space R

n, which is where we ultimately represent
uncertainty or (small) state increments. All these steps are
undertaken with absolutely no loss in precision or exactness,

TX M

M M

TX M
XX

Ẋ

Figure 2. A manifold M and the vector space TXM (in this case ⇠= R
2)

tangent at the point X , and a convenient side-cut. The velocity element, Ẋ =
@X/@t, does not belong to the manifold M but to the tangent space TXM.

and we believe they make the understanding of the LT and the
manipulation of its tools easier.

This paper is accompanied by a new open-source C++
header-only library, called manif [7], which can be found
at https://github.com/artivis/manif. manif implements the
widely used groups SO(2), SO(3), SE(2) and SE(3), with
support for the creation of analytic Jacobians. The library is
designed for ease of use, flexibility, and performance.

II. A MICRO LIE THEORY

A. The Lie group
The Lie group encompasses the concepts of group and

smooth manifold in a unique body: a Lie group G is a smooth
manifold whose elements satisfy the group axioms. We briefly
present these two concepts before joining them together.

On one hand, a differentiable or smooth manifold is a
topological space that locally resembles linear space. The
reader should be able to visualize the idea of manifold (Fig. 2):
it is like a curved, smooth (hyper)-surface, with no edges or
spikes, embedded in a space of higher dimension. In robotics,
we say that our state vector evolves on this surface, that is, the
manifold describes or is defined by the constraints imposed on
the state. For example, vectors with the unit norm constraint
define a spherical manifold of radius one. The smoothness of
the manifold implies the existence of a unique tangent space
at each point. This space is a linear or vector space on which
we are allowed to do calculus.

On the other hand, a group (G, �) is a set, G, with a
composition operation, �, that, for elements X , Y, Z 2 G,
satisfies the following axioms,

Closure under ‘�’ : X � Y 2 G (1)
Identity E : E � X = X � E = X (2)

Inverse X�1 : X�1 � X = X � X�1 = E (3)
Associativity : (X � Y) � Z = X � (Y � Z) . (4)

In a Lie group, the manifold looks the same at every point
(like e.g. in the surface of a sphere, see Exs. 1 and 2), and
therefore all tangent spaces at any point are alike. The group
structure imposes that the composition of elements of the
manifold remains on the manifold, (1), and that each element
has an inverse also in the manifold, (3). A special one of
these elements is the identity, (2), and thus a special one of
the tangent spaces is the tangent at the identity, which we call
the Lie algebra of the Lie group. Lie groups join the local
properties of smooth manifolds, allowing us to do calculus,






































































































 remark sn 2ge Te

errorprone



3

z

✓

✓

i✓ = log(x⇤
z)x

zS
1

S
1

T1S
1 = iR ⇠= R

i✓ = log(z)
z = exp(i✓)

log
exp

1

z = x exp(i✓)

TxS
1 ⇠= R

i

Figure 3. The S1 manifold is a unit circle (blue) in the plane C, where the unit
complex numbers z⇤z = 1 live. The Lie algebra s1 = TES1 is the line of
imaginary numbers iR (red), and any tangent space TS1 is isomorphic to the
line R (red). Tangent vectors (red segment) wrap the manifold creating the arc
of circle (blue arc). Mappings exp and log (arrows) map (wrap and unwrap)
elements of iR to/from elements of S1 (blue arc). Increments between unit
complex numbers are expressed in the tangent space via composition and the
exponential map (and we will define special operators �, for this). See the
text for explanations, and Fig. 4 for a similar group.

Example 1: The unit complex numbers group S
1

Our first example of Lie group, which is the easiest to
visualize, is the group of unit complex numbers under
complex multiplication (Fig. 3). Unit complex numbers
take the form z = cos ✓ + i sin ✓.
– Action: Vectors x = x + iy rotate in the plane by an
angle ✓, through complex multiplication, x

0 = zx.
– Group facts: The product of unit complex numbers is
a unit complex number, the identity is 1, and the inverse
is the conjugate z

⇤.
– Manifold facts: The unit norm constraint defines the
unit circle in the complex plane (which can be viewed as
the 1-sphere, and hence the name S

1). This is a 1-DoF
curve in 2-dimensional space. Unit complex numbers
evolve with time on this circle. The group (the circle)
ressembles the linear space (the tangent line) locally, but
not globally.

with the global properties of groups, enabling the nonlinear
composition of distant objects.

B. The group actions

Importantly, Lie groups come with the power to transform
elements of other sets, producing e.g. rotations, translations,
scalings, and combinations of them. These are extensively used
in robotics, both in 2D and 3D.

Given a Lie group M and a set V , we note X ·v the action
of X 2M on v 2 V ,

· : M⇥ V ! V ; (X , v) 7! X · v . (5)

For · to be a group action, it must satisfy the axioms,

Identity : E · v = v (6)
Compatibility : (X � Y) · v = X · (Y · v) . (7)

Common examples are the groups of rotation matrices
SO(n), the group of unit quaternions, and the groups of rigid

✓
qS

3

Hp
⇠= R

3

q = exp(u✓)
u✓ = log(q)

S
3

Hp
⇠= R

3

✓q S
3 ✓

q = p � ✓
✓ = q p

q

p

1

⇠= R
3

Figure 4. The S3 manifold is a unit 3-sphere (blue) in the 4-space of
quaternions H, where the unit quaternions q⇤ q = 1 live. The Lie algebra
is the space of pure imaginary quaternions ix+ jy + kz 2 Hp, isomorphic
to the hyperplane R

3 (red grid), and any other tangent space TS3 is also
isomorphic to R

3. Tangent vectors (red segment) wrap the manifold over the
great arc or geodesic (dashed). The centre and right figures show a side-cut
through this geodesic (notice how it resembles S1 in Fig. 3). Mappings exp
and log (arrows) map (wrap and unwrap) elements of Hp to/from elements of
S3 (blue arc). Increments between quaternions are expressed in the tangent
space via the operators �, (see text).

Example 2: The unit quaternions group S
3

A second example of Lie group, which is also relatively
easy to visualize, is the group of unit quaternions under
quaternion multiplication (Fig. 4). Unit quaternions take
the form q = cos(✓/2) + u sin(✓/2), with u = iux +
juy + kuz a unitary axis and ✓ a rotation angle.
– Action: Vectors x = ix + jy + kz rotate in 3D space
by an angle ✓ around the unit axis u through the double
quaternion product x

0 = qxq
⇤.

– Group facts: The product of unit quaternions is a
unit quaternion, the identity is 1, and the inverse is the
conjugate q

⇤.
– Manifold facts: The unit norm constraint defines the 3-
sphere S

3, a spherical 3-dimensional surface or manifold
in 4-dimensional space. Unit quaternions evolve with
time on this surface. The group (the sphere) ressembles
the linear space (the tangent hyperplane R

3 ⇢ R
4)

locally, but not globally.

motion SE(n). Their respective actions on vectors satisfy

SO(n) : rotation matrix R · x , Rx

SE(n) : Euclidean matrix H · x , Rx + t

S
1 : unit complex z · x , zx

S
3 : unit quaternion q · x , qxq

⇤

See Table I for a more detailed exposition, and the appendices.
The group composition (1) may be viewed as an action of

the group on itself, � : M ⇥M ! M. Another interesting
action is the adjoint action, which we will see in Section II-F.

C. The tangent spaces and the Lie algebra

Given X (t) a point moving on a Lie group’s manifold M,
its velocity Ẋ = @X/@t belongs to the space tangent to M
at X (Fig. 2), which we note TX M. The smoothness of the
manifold, i.e., the absence of edges or spikes, implies the
existence of a unique tangent space at each point. The structure
of such tangent spaces is the same everywhere.










































































































4

Table I
TYPICAL LIE GROUPS USED IN 2D AND 3D MOTION, INCLUDING THE TRIVIAL R

n . SEE THE APPENDICES FOR FULL REFERENCE

Lie group M, � size dim X 2M Constraint ⌧^ 2 m ⌧ 2 R
m Exp(⌧ ) Comp. Action

n-D vector R
n,+ n n v 2 R

n v � v = 0 v 2 R
n v 2 R

n v = exp(v) v1+v2 v + x

circle S1, · 2 1 z 2 C z⇤z = 1 i✓ 2 iR ✓ 2 R z = exp(i✓) z1 z2 zx
Rotation SO(2), · 4 1 R R>R = I [✓]⇥ 2 so(2) ✓ 2 R R = exp([✓]⇥) R1 R2 Rx

Rigid motion SE(2), · 9 3 M =
⇥
R t
0 1

⇤
R>R = I

h
[✓]⇥ ⇢

0 0

i
2se(2)

⇥ ⇢
✓

⇤
2 R

3 exp
⇣h

[✓]⇥ ⇢

0 0

i⌘
M1 M2 Rx+t

3-sphere S3, · 4 3 q 2 H q⇤q = 1 ✓/2 2 Hp ✓ 2 R
3 q = exp(u✓/2) q1 q2 qxq⇤

Rotation SO(3), · 9 3 R R>R = I [✓]⇥ 2 so(3) ✓ 2 R
3 R = exp([✓]⇥) R1 R2 Rx

Rigid motion SE(3), · 16 6 M =
⇥
R t
0 1

⇤
R>R = I

h
[✓]⇥ ⇢

0 0

i
2se(3)

⇥ ⇢
✓

⇤
2 R

6 exp
⇣h

[✓]⇥ ⇢

0 0

i⌘
M1 M2 Rx+t

S
1

1

z(t)

T1S
1 = iRTzS

1

z
v

^ = i! 2 iR

ż = z · i! /2 iR

1
v

^ = i! 2 iR

ż = i! 2 iR

!t

Figure 5. Let a point z 2 S1 move at constant rotation rate !, z(t) =
cos!t + i sin!t. Its velocities when passing through 1 and z are in the
respective tangent spaces, T1S1 and TzS1. In the case of TzS1, the velocity
is ż = z i! = �! sin!t + i! cos!t when expressed in the global
coordinates, and zv^ = i! when expressed locally. Their relation is given
by zv^ = z�1ż = z⇤ż. In the case of T1S1, this relation is the identity
1v^ = ż = i!. Clearly, the structure of all tangent spaces is iR, which is
the Lie algebra. This is also the structure of ż at the identity, and this is why
the Lie algebra is defined as the tangent space at the identity.

1) The Lie algebra m: The tangent space at the identity,
TEM, is called the Lie algebra of M, and noted m,

Lie algebra : m , TEM . (8)

Every Lie group has an associated Lie algebra. We relate the
Lie group with its Lie algebra through the following facts [5]
(see Figs. 1 and 6):

• The Lie algebra m is a vector space.1 As such, its
elements can be identified with vectors in R

m, whose
dimension m is the number of degrees of freedom of
M.

• The exponential map, exp : m ! M, exactly converts
elements of the Lie algebra into elements of the group.
The log map is the inverse operation.

• Vectors of the tangent space at X can be transformed
to the tangent space at the identity E through a linear
transform. This transform is called the adjoint.

Lie algebras can be defined locally to a tangent point X ,
establishing local coordinates for TX M (Fig. 5). We shall
denote elements of the Lie algebras with a ‘hat’ decorator,
such as v

^ for velocities or ⌧^ = (vt)^ = v
^
t for general

elements. A left superscript may also be added to specify the
precise tangent space, e.g., X

v
^ 2 TX M and E

v
^ 2 TEM.

The structure of the Lie algebra can be found (see Exam-
ples 3 and 5) by time-differentiating the group constraint (3).

1In any Lie algebra, the vector space is endowed with a non-associative
product called the Lie bracket. In this work, we will not make use of it.

X 2 M
log

exp

Log

Exp
(·)_(·)^

Manifold
⌧^ 2 mLie algebra

⌧ 2 R
mVector

Tangent TEM

Figure 6. Mappings between the manifold M and the representations of its
tangent space at the origin TEM (Lie algebra m and Cartesian R

m). Maps
hat (·)^ and vee (·)_ are the linear invertible maps or isomorphisms (10–11),
exp(·) and log(·) map the Lie algebra to/from the manifold, and Exp(·) and
Log(·) are shortcuts to map directly the vector space R

m to/from M.

For multiplicative groups this yields the new constraint
X�1Ẋ + ˙X�1X = 0, which applies to the elements tangent at
X (the term ˙X�1 is the derivative of the inverse). The elements
of the Lie algebra are therefore of the form,2

v
^ = X�1Ẋ = � ˙X�1X . (9)

2) The Cartesian vector space R
m: The elements ⌧^ of

the Lie algebra have non-trivial structures (skew-symmetric
matrices, imaginary numbers, pure quaternions, see Table I)
but the key aspect for us is that they can be expressed as linear
combinations of some base elements Ei, where Ei are called
the generators of m (they are the derivatives of X around the
origin in the i-th direction). It is then handy to manipulate
just the coordinates as vectors in R

m, which we shall note
simply ⌧ . We may pass from m to R

m and vice versa through
two mutually inverse linear maps or isomorphisms, commonly
called hat and vee (see Fig. 6),

Hat : R
m ! m ; ⌧ 7! ⌧^ =

mX

i=1

⌧i Ei (10)

Vee : m! R
m ; ⌧^ 7! (⌧^)_ = ⌧ =

mX

i=1

⌧i ei , (11)

with ei the vectors of the base of R
m (we have e

^
i = Ei).

This means that m is isomorphic to the vector space R
m —

one writes m ⇠= R
m, or ⌧^ ⇠= ⌧ . Vectors ⌧ 2 R

m are handier
for our purposes than their isomorphic ⌧^ 2 m, since they
can be stacked in larger state vectors, and more importantly,

2For additive Lie groups the constraint X�X = 0 differentiates to Ẋ = Ẋ ,
that is, no constraint affects the tangent space. This means that the tangent
space is the same as the group space. See App. E for more details.








































































































ladgebraYear expired

EIEE.in
Wo R



5

Example 3: The rotation group SO(3), its Lie algebra
so(3), and the vector space R

3

In the rotation group SO(3), of 3⇥3 rotation matrices
R, we have the orthogonality condition R

>
R = I. The

tangent space may be found by taking the time derivative
of this constraint, that is R

>
Ṙ + Ṙ

>
R = 0, which we

rearrange as
R
>
Ṙ = �(R>Ṙ)>.

This expression reveals that R
>
Ṙ is a skew-symmetric

matrix (the negative of its transpose). Skew-symmetric
matrices are often noted [!]⇥ and have the form

[!]⇥ =


0 �!z !y

!z 0 �!x
�!y !x 0

�
.

This gives R
>
Ṙ = [!]⇥. When R = I we have

Ṙ = [!]⇥ ,

that is, [!]⇥ is in the Lie algebra of SO(3), which
we name so(3). Since [!]⇥ 2 so(3) has 3 DoF, the
dimension of SO(3) is m = 3. The Lie algebra is a
vector space whose elements can be decomposed into

[!]⇥ = !xEx + !yEy + !zEz

with Ex =
h

0 0 0
0 0 �1
0 1 0

i
, Ey =

h
0 0 1
0 0 0
�1 0 0

i
, Ez =

h
0 �1 0
1 0 0
0 0 0

i
the

generators of so(3), and where ! = (!x, !y, !z) 2 R
3

is the vector of angular velocities. The one-to-one linear
relation above allows us to identify so(3) with R

3 —
we write so(3) ⇠= R

3. We pass from so(3) to R
3 and

viceversa using the linear operators hat and vee,

Hat : R
3 ! so(3); ! 7! !^ = [!]⇥

Vee : so(3)! R
3; [!]⇥ 7! [!]_⇥ = ! .

manipulated with linear algebra using matrix operators. In
this work, we enforce this preference of R

m over m, to the
point that most of the operators and objects that we define
(specifically: the adjoint, the Jacobians, the perturbations and
their covariances matrices, as we will see soon) are on R

m.

D. The exponential map
The exponential map exp() allows us to exactly transfer

elements of the Lie algebra to the group (Fig. 1), an operation
generically known as retraction. Intuitively, exp() wraps the
tangent element around the manifold following the great arc
or geodesic (as when wrapping a string around a ball, Figs. 1,
3 and 4). The inverse map is the log(), i.e., the unwrapping
operation. The exp() map arises naturally by considering the
time-derivatives of X 2 M over the manifold, as follows.
From (9) we have,

Ẋ = Xv
^

. (12)

For v constant, this is an ordinary differential equation (ODE)
whose solution is

X (t) = X (0) exp(v^t) . (13)

Example 4: The exponential map of SO(3)

We have seen in Ex. 3 that Ṙ = R [!]⇥ 2 TRSO(3).
For ! constant, this is an ordinary differential equation
(ODE), whose solution is R(t) = R0 exp([!]⇥ t). At the
origin R0 = I we have the exponential map,

R(t) = exp([!]⇥ t) 2 SO(3) .

We now define the vector ✓ , u✓ , !t 2 R
3 as

the integrated rotation in angle-axis form, with angle ✓

and unit axis u. Thus [✓]⇥ 2 so(3) is the total rotation
expressed in the Lie algebra. We substitute it above. Then
write the exponential as a power series,

R = exp([✓]⇥) =
X

k

✓
k

k!
([u]⇥)k

.

In order to find a closed-form expression, we write down
a few powers of [u]⇥,

[u]0⇥ = I, [u]1⇥ = [u]⇥ ,

[u]2⇥ = uu
> � I, [u]3⇥ = � [u]⇥ ,

[u]4⇥ = � [u]2⇥ , · · ·

and realize that all can be expressed as multiples of I,
[u]⇥ or [u]2⇥. We thus rewrite the series as,

R = I + [u]⇥
�
✓ � 1

3!✓
3 + 1

5!✓
5 � · · ·

�

+ [u]2⇥
�

1
2✓

2 � 1
4!✓

4 + 1
6!✓

6 � · · ·
�

,

where we identify the series of sin ✓ and cos ✓, yielding
the closed form,

R = exp([u✓]⇥) = I + [u]⇥ sin ✓ + [u]2⇥ (1�cos ✓) .

This expression is the well known Rodrigues rotation
formula. It can be used as the capitalized exponential
just by doing R = Exp(u✓) = exp([u✓]⇥).

Since X (t) and X (0) are elements of the group, then
exp(v^t) = X (0)�1X (t) must be in the group too, and so
exp(v^t) maps elements v

^
t of the Lie algebra to the group.

This is known as the exponential map.
In order to provide a more generic definition of the expo-

nential map, let us define the tangent increment ⌧ , vt 2 R
m

as velocity per time, so that we have ⌧^ = v
^
t 2 m a point

in the Lie algebra. The exponential map, and its inverse the
logarithmic map, can be now written as,

exp : m!M ; ⌧^ 7! X = exp(⌧^) (14)
log : M! m ; X 7! ⌧^ = log(X ) . (15)

Closed forms of the exponential in multiplicative groups are
obtained by writing the absolutely convergent Taylor series,

exp(⌧^) = E + ⌧^ + 1
2⌧^

2
+ 1

3!⌧
^3

+ · · · , (16)

and taking advantage of the algebraic properties of the powers
of ⌧^ (see Ex. 4 and 5 for developments of the exponential








































































































w o

wo

J β



6

Example 5: The unit quaternions group S
3 (cont.)

In the group S
3 (recall Ex. 2 and see e.g. [8]), the time

derivative of the unit norm condition q
⇤
q = 1 yields

q
⇤
q̇ = �(q⇤q̇)⇤.

This reveals that q
⇤
q̇ is a pure quaternion (its real part

is zero). Pure quaternions uv 2 Hp have the form

uv = (iux + juy + kuz)v = ivx + jvy + kvz,

where u , iux + juy + kuz is pure and unitary, v is
the norm, and i, j, k are the generators of the Lie algebra
s3 = Hp. Re-writing the condition above we have,

q̇ = quv 2 TqS
3
,

which integrates to q = q0 exp(uvt). Letting q0 = 1
and defining � , u� , uvt we get the exponential map,

q = exp(u�) ,
X �

k

k!
u

k 2 S
3

.

The powers of u follow the pattern 1,u,�1,�u, 1, · · · .
Thus we group the terms in 1 and u and identify the
series of cos � and sin �. We get the closed form,

q = exp(u�) = cos(�) + u sin(�) ,

which is a beautiful extension of the Euler formula,
exp(i�) = cos �+i sin �. The elements of the Lie algebra
� = u� 2 s3 can be identified with the rotation vector
✓ 2 R

3 trough the mappings hat and vee,

Hat : R
3 ! s3; ✓ 7! ✓^ = ✓/2

Vee : s3 ! R
3; � 7! �_ = 2� ,

where the factor 2 accounts for the double effect of the
quaternion in the rotation action, x

0 = qxq
⇤. With this

choice of Hat and Vee, the quaternion exponential

q = Exp(u✓) = cos(✓/2) + u sin(✓/2)

is equivalent to the rotation matrix R = Exp(u✓).

map in SO(3) and S
3). These are then inverted to find the

logarithmic map. Key properties of the exponential map are

exp((t + s)⌧^) = exp(t⌧^) exp(s⌧^) (17)
exp(t⌧^) = exp(⌧^)t (18)

exp(�⌧^) = exp(⌧^)�1 (19)
exp(X⌧^X�1) = X exp(⌧^)X�1

, (20)

where (20), a surprising and powerful statement, can be proved
easily by expanding the Taylor series and simplifying the many
terms X�1X .

1) The capitalized exponential map: The capitalized Exp
and Log maps are convenient shortcuts to map vector elements
⌧ 2 R

m (⇠= TEM) directly with elements X 2M. We have,

Exp : R
m !M ; ⌧ 7! X = Exp(⌧ ) (21)

Log : M! R
m ; X 7! ⌧ = Log(X ) . (22)

M

X⌧

E⌧

X

E

Y
Y = E⌧ � X = X � X⌧

E
�

X
� Y = E

� � X = X � X
�

E⌧ = AdX
X⌧

X

X

Figure 7. Two paths, X � X� and E� � X , join the origin E with the point
Y . They both compose the element X with increments or ‘deltas’ expressed
either in the local frame, X�, or in the origin, E�. Due to non-commutativity,
the elements X� and E� are not equal. Their associated tangent vectors X⌧ =
Log(X�) and E⌧ = Log(E�) are therefore unequal too. They are related by
the linear transform E⌧ = AdX X⌧ where AdX is the adjoint of M at X .

Clearly from Fig. 6,

X = Exp(⌧ ) , exp(⌧^) (23)
⌧ = Log(X ) , log(X )_ . (24)

See the Appendices for details on the implementation of these
maps for different manifolds.

E. Plus and minus operators

Plus and minus allow us to introduce increments between
elements of a (curved) manifold, and express them in its (flat)
tangent vector space. Denoted by � and  , they combine one
Exp/Log operation with one composition. Because of the non-
commutativity of the composition, they are defined in right-
and left- versions depending on the order of the operands. The
right operators are (see Fig. 4-right),

right-� : Y = X � X⌧ , X � Exp(X⌧ ) 2M (25)
right- : X⌧ = Y  X , Log(X�1�Y) 2 TX M . (26)

Because in (25) Exp(X⌧ ) appears at the right hand side of the
composition, X⌧ belongs to the tangent space at X (see (26)):
we say by convention3 that X⌧ is expressed in the local frame
at X — we note reference frames with a left superscript.

The left operators are,

left-� : Y = E⌧ � X , Exp(E⌧ ) � X 2M (27)
left- : E⌧ = Y  X , Log(Y�X�1) 2 TEM . (28)

Now, in (27) Exp(E⌧ ) is on the left and we have E⌧ 2 TEM:
we say that E⌧ is expressed in the global frame.

Notice that while left- and right- � are distinguished by the
operands order, the notation  in (26) and (28) is ambiguous.
In this work, we express perturbations locally by default and
therefore we use the right- forms of � and  by default.

F. The adjoint, and the adjoint matrix

If we identify Y in (25, 27), we arrive at E⌧ � X = X � X⌧ ,
which determines a relation between the local and global

3The convention sticks to that of frame transformation, e.g. Gx = RLx,
where the matrix R 2 SO(3) transforms local vectors into global. Notice
that this convention is not shared by all authors, and for example [9] uses the
opposite, Lx = RGx.








































































































SEBI seesee ED KJ dx
k

jqgj É



7

tangent elements (Fig. 7). We develop it with (20, 25, 27) as

Exp(E⌧ )X = X Exp(X⌧ )

exp(E⌧^) = X exp(X⌧^)X�1 = exp(X X⌧^X�1)
E⌧^ = X X⌧^X�1

1) The adjoint: We thus define the adjoint of M at X ,
noted AdX , to be

AdX : m! m; ⌧^ 7! AdX (⌧^) , X⌧^X�1
, (29)

so that E⌧^ = AdX (X⌧^). This defines the adjoint action
of the group on its own Lie algebra. The adjoint has two
interesting (and easy to prove) properties,

Linear : AdX (a⌧^ + b�^) = aAdX (⌧^)

+ bAdX (�^)

Homomorphism : AdX (AdY(⌧^)) = AdXY(⌧^) .

2) The adjoint matrix: Since AdX () is linear, we can find
an equivalent matrix operator AdX that maps the Cartesian
tangent vectors E⌧ ⇠= E⌧^ and X⌧ ⇠= X⌧^,

AdX : R
m ! R

m; X⌧ 7! E⌧ = AdX
X⌧ , (30)

which we call the adjoint matrix. This can be computed by
applying _ to (29), thus writing

AdX ⌧ = (X⌧^X�1)_ , (31)

then developing the right hand side to identify the adjoint
matrix (see Ex. 6 and the appendices). Additional properties
of the adjoint matrix are,

X � ⌧ = (AdX ⌧ )� X (32)
AdX�1 = AdX

�1 (33)
AdXY = AdXAdY . (34)

Notice in (33, 34) that the left parts of the equality are usually
cheaper to compute than the right ones. We will use the adjoint
matrix often as a way to linearly transform vectors of the
tangent space at X onto vectors of the tangent space at the
origin, with E⌧ = AdX

X⌧ , (30). In this work, the adjoint
matrix will be referred to as simply the adjoint.

G. Derivatives on Lie groups

Among the different ways to define derivatives in the
context of Lie groups, we concentrate on those in the form
of Jacobian matrices mapping vector tangent spaces. This
is sufficient here since in these spaces uncertainties and
increments can be properly and easily defined. Using these
Jacobians, the formulas for uncertainty management in Lie
groups will largely resemble those in vector spaces.

The Jacobians described hereafter fulfill the chain rule, so
that we can easily compute any Jacobian from the partial
Jacobian blocks of inversion, composition, exponentiation and
action. See Section III-A for details and proofs.

Example 6: The adjoint matrix of SE(3)

The SE(3) group of rigid body motions (see App. D) has
group, Lie algebra and vector elements,

M =


R t

0 1

�
, ⌧^ =


[✓]⇥ ⇢
0 0

�
, ⌧ =


⇢
✓

�
.

The adjoint matrix is identified by developing (31) as

AdM ⌧ = (M⌧^M�1)_ = · · · =

=

✓
R [✓]⇥R

> �R [✓]⇥R
>
t + R⇢

0 0

�◆_

=

✓
[R✓]⇥ [t]⇥R✓ + R⇢

0 0

�◆_

=


[t]⇥R✓ + R⇢

R✓

�
=


R [t]⇥R

0 R

� 
⇢
✓

�

where we used [R✓]⇥ = R [✓]⇥R
> and [a]⇥ b =

� [b]⇥ a. So the adjoint matrix is

AdM =


R [t]⇥R

0 R

�
2 R

6⇥6
.

1) Reminder: Jacobians on vector spaces: For a multivari-
ate function f : R

m ! R
n, the Jacobian matrix is defined as

the n⇥m matrix stacking all partial derivatives,

J =
@f(x)

@x
,

2

64

@f1

@x1
· · · @f1

@xm

...
...

@fn

@x1
· · · @fn

@xm

3

75 2 R
n⇥m

. (35)

It is handy to define this matrix in the following form. Let us
partition J = [j1 · · · jm], and let ji = [@f1

@xi
· · · @fn

@xi
]> be its i-th

column vector. This column vector responds to

ji =
@f(x)

@xi
, lim

h!0

f(x + hei)� f(x)

h
2 R

n
, (36)

where ei is the i-th vector of the natural basis of R
m.

Regarding the numerator, notice that the vector

vi(h) , f(x + hei)� f(x) 2 R
n (37)

is the variation of f(x) when x is perturbed in the direction
of ei, and that the respective Jacobian column is just ji =
@vi(h)/@h|h=0 = limh!0 vi(h)/h. In this work, for the sake
of convenience, we introduce the compact form,

J =
@f(x)

@x
, lim

h!0

f(x + h)� f(x)

h
2 R

n⇥m
, (38)

with h 2 R
m, which aglutinates all columns (36) to form

the definition of (35). We remark that (38) is just a notation
convenience (just as (35) is), since division by the vector h

is undefined and proper computation requires (36). However,
this form may be used to calculate Jacobians by developing
the numerator into a form linear in h, and identifying the left
hand side as the Jacobian, that is,

lim
h!0

f(x+h)�f(x)

h
= · · · = lim

h!0

Jh

h
, @Jh

@h
= J. (39)








































































































we

O



8

f(X )⌧1 = he1

M

X

N f(X �⌧1)

�

 
f(·)

X �⌧1

TX M Tf(X )N
⌧2 = he2

j1

j2

�2(h)�1(h)

Figure 8. Right Jacobian of a function f : M! N . The perturbation vectors
in the canonical directions, ⌧i = hei 2 TXM, are propagated to perturbation
vectors �i 2 Tf(X )N through the processes of plus, apply f(), and minus
(green arrows), obtaining �i(h) = f(X�hei) f(X ). For varying values of
h, notice that in M the perturbations ⌧i(h) = hei (thick red) produce paths
in M (blue) along the geodesic (recall Fig. 1). Notice also that in N , due to
the non-linearity of f(·), the image paths (solid blue) are generally not in the
geodesic (dashed blue). These image paths are lifted onto the tangent space
Tf(X )N , producing smooth curved paths (thin solid red). The column vectors
ji of J (thick red) are the derivatives of the lifted paths evaluated at f(X ), i.e.,
ji = limh!0 �i(h)/h. Each hei 2 TXM gives place to a ji 2 Tf(X )N ,
and thus the resulting Jacobian matrix J = [ j1 · · · jm ] 2 R

n⇥m linearly
maps vectors from TXM ⇠= R

m to Tf(X )N ⇠= R
n.

Notice finally that for small values of h we have the linear
approximation,

f(x + h) ���!
h!0

f(x) +
@f(x)

@x
h . (40)

2) Right Jacobians on Lie goups: Inspired by the standard
derivative definition (38) above, we can now use our � and  
operators to define Jacobians of functions f : M! N acting
on manifolds (see Fig. 8). Using the right- {�, } in place of
{+,�} we obtain a form akin to the standard derivative,4

X
Df(X )

DX , lim
⌧!0

f(X � ⌧ ) f(X )

⌧
2 R

n⇥m (41a)

which develops as,

= lim
⌧!0

Log
�
f(X )�1 � f(X � Exp(⌧ ))

�

⌧
(41b)

=
@ Log

�
f(X )�1 � f(X �Exp(⌧ ))

�

@⌧

�����
⌧=0

. (41c)

We call this Jacobian the right Jacobian of f . Notice that (41c)
is just the standard derivative (38) of the rather complicated
function g(⌧ ) = Log

�
f(X )�1 � f(X � Exp(⌧ ))

�
. Writing it

as in (41a) conveys much more intuition: it is the derivative
of f(X ) with respect to X , only that we expressed the
infinitesimal variations in the tangent spaces! Indeed, thanks
to the way right- � and  operate, variations in X and f(X )
are now expressed as vectors in the local tangent spaces, i.e.,
tangent respectively at X 2M and f(X ) 2 N . This derivative
is then a proper Jacobian matrix R

n⇥m linearly mapping the
local tangent spaces TX M ! Tf(X )N (and we mark the
derivative with a local ‘X ’ superscript). Just as in vector
spaces, the columns of this matrix correspond to directional
derivatives. That is, the vector

�i(h) = f(X � hei) f(X ) 2 R
n (42)

4The notation DY
DX = Df(X )

DX is chosen in front of other alternatives in
order to make the chain rule readable, i.e., DZ

DX = DZ
DY

DY
DX . We will later

introduce the lighter notation JY
X , DY

DX .

Y = f(X )

M

X⌧E⌧

X

E
E N

Y�

E�

AdX AdY

X
DY

DX

E
DY
DX

Y
DY

EDX

E
DY

XDX

Figure 9. Linear maps between all tangent spaces involved in a function Y =
f(X ), from M to N . The linear maps E⌧ = AdX X⌧ , E� = AdY Y�,
E� =

EDY
DX

E⌧ , and Y� =
XDY
DX

X⌧ , form a loop (solid) that leads to (46).
The crossed Jacobians (dashed) form more mapping loops leading to (47,48).

(see Fig. 8 again, and compare �i in (42) with vi in (37)) is
the variation of f(X ) when X varies in the direction of ei.
Its respective Jacobian column is ji = @�i(h)/@h|h=0.

As before, we use (41a) to actually find Jacobians by
resorting to the same mechanism (39). For example, for a 3D
rotation f : SO(3)! R

3; f(R) = Rp, we have M = SO(3)
and N = R

3 and so (see App. B-C5),
R

DRp

DR
= lim

✓!0

(R� ✓)p Rp

✓
= lim

✓!0

RExp(✓)p�Rp

✓

= lim
✓!0

R(I + [✓]⇥)p�Rp

✓
= lim

✓!0

R [✓]⇥ p

✓

= lim
✓!0

�R [p]⇥ ✓

✓
= �R [p]⇥ 2 R

3⇥3
.

Many examples of this mechanism can be observed in Sec-
tion III and the appendices. Remark that whenever the function
f passes from one manifold to another, the plus and minus
operators in (41a) must be selected appropriately: � for the
domain M, and  for the codomain or image N .

For small values of ⌧ , the following approximation holds,

f(X � X⌧ ) ����!
X⌧!0

f(X )�
X

Df(X )

DX
X⌧ 2 N . (43)

3) Left Jacobians on Lie groups: Derivatives can also be
defined from the left- plus and minus operators, leading to,

E
Df(X )

DX , lim
⌧!0

f(⌧ � X ) f(X )

⌧
2 R

n⇥m (44)

= lim
⌧!0

Log(f(Exp(⌧ ) � X ) � f(X )�1)

⌧

=
@ Log

�
f(Exp(⌧ ) � X ) � f(X )�1

�

@⌧

�����
⌧=0

,

which we call the left Jacobian of f . Notice that now
⌧ 2 TEM, and the numerator belongs to TEN , thus the left
Jacobian is a n⇥m matrix mapping the global tangent spaces,
TEM! TEN , which are the Lie algebras of M and N (and
we mark the derivative with a global or origin ‘E’ superscript).
For small values of ⌧ the following holds,

f(E⌧ � X ) ����!
E⌧!0

E
Df(X )

DX
E⌧ � f(X ) 2 N . (45)

We can show from (32, 43, 45) (see Fig. 9) that left and
right Jacobians are related by the adjoints of M and N ,

E
Df(X )

DX AdX = Adf(X )

X
Df(X )

DX . (46)








































































































I

2 1413 54 9 1 andtwo left
than



9

M

TX̄ M
X̄

Figure 10. Uncertainty around a point X̄ 2 M is properly expressed as a
covariance on the vector space tangent at the point (red). Using � (51), the
probability ellipses in the tangent space are wrapped over the manifold (blue),
thus illustrating the probability concentration region on the group.

4) Crossed right–left Jacobians: One can also define Jaco-
bians using right-plus but left-minus, or vice versa. Though
improbable, these are sometimes useful, since they map local
to global tangents or vice versa. To keep it short, we will just
relate them to the other Jacobians through the adjoints,

E
DY

X DX =
E
DY

EDX AdX = AdY
Y
DY

X DX (47)
Y
DY

EDX =
Y
DY

X DX AdX
�1 = AdY

�1
E
DY

EDX , (48)

where Y = f(X ). Now, the upper and lower super-scripts
indicate the reference frames where the differentials are ex-
pressed. Respective small-tau approximations read,

f(X � X ⌧ ) ����!
X⌧!0

E
Df(X )
X DX

X ⌧ � f(X ) (49)

f(E⌧ � X ) ����!
E⌧!0

f(X )�
f(X )

Df(X )
EDX

E⌧ . (50)

H. Uncertainty in manifolds, covariance propagation
We define local perturbations ⌧ around a point X̄ 2M in

the tangent vector space TX̄ M, using right- � and  ,

X = X̄ � ⌧ , ⌧ = X  X̄ 2 TX̄ M . (51)

Covariances matrices can be properly defined on this tangent
space at X̄ through the standard expectation operator E[·],

⌃X , E[⌧⌧>] = E[(X  X̄ )(X  X̄ )>] 2 R
m⇥m

, (52)

allowing us to define Gaussian variables on manifolds, X ⇠
N (X̄ ,⌃X ), see Fig. 10. Notice that although we write ⌃X , the
covariance is rather that of the tangent perturbation ⌧ . Since
the dimension m of TM matches the degrees of freedom of
M, these covariances are well defined.5

Perturbations can also be expressed in the global reference,
that is, in the tangent space at the origin TEM, using left- �
and  ,

X = ⌧ � X̄ , ⌧ = X  X̄ 2 TEM . (53)

This allows global specification of covariance matrices using
left-minus in (52). For example, a 3D orientation that is known
up to rotations in the horizontal plane can be associated to

5A naive definition ⌃X , E[(X � X̄ )(X � X̄ )>] is always ill-defined if
size(X ) > dim(M), which is the case for most non-trivial manifolds.

X0

X3

X4
�3

�1

⌧1

⌧2

⌧3

⌧4

�2

M

X1
X2

�4

M

TX0M ⌧1

�1

Figure 11. Motion integration on a manifold. Each motion data produces
a step ⌧k 2 TXk�1

M, which is wrapped to a local motion increment or
‘delta’ �k = Exp(⌧k) 2M, and then composed with Xk�1 to yield Xk =
Xk�1 � �k = Xk�1 � Exp(⌧k) = Xk�1 � ⌧k 2M.

a covariance E
⌃ = diag(�2

�, �
2
✓ ,1). Since “horizontal” is

a global specification, E
⌃ must be specified in the global

reference.
Since global and local perturbations are related by the

adjoint (30), their covariances can be transformed with
E
⌃X = AdX

X
⌃X AdX

>
. (54)

Covariance propagation through a function f : M !
N ; X 7! Y = f(X ) just requires the linearization (43) with
Jacobian matrices (41a) to yield the familiar formula,

⌃Y ⇡
Df

DX ⌃X
Df

DX

>
2 R

n⇥n
. (55)

I. Discrete integration on manifolds
The exponential map X (t) = X0 � Exp(vt) performs the

continuous-time integral of constant velocities v 2 TX0M
onto the manifold. Non-constant velocities v(t) are typically
handled by segmenting them into piecewise constant bits
vk 2 TXk�1M, of (short) duration �tk, and writing the
discrete integral

Xk = X0 � Exp(v1�t1) � Exp(v1�t2) � · · · � Exp(vk�tk)

= X0 � v1�t1 � v1�t2 � · · ·� vk�tk .

Equivalently (Fig. 11), we can define ⌧k = vk�tk and
construct the integral as a “sum” of (small) discrete tangent
steps ⌧k 2 TXk�1M, i.e., Xk , X0 � ⌧1 � ⌧2 � · · ·� ⌧k. We
write all these variants in recursive form,

Xk = Xk�1 � ⌧k = Xk�1 � Exp(⌧k) = Xk�1 � Exp(vk�tk) .

(56)

Common examples are the integration of 3D angular rates
! into the rotation matrix, Rk = Rk�1 Exp(!k�t), or into
the quaternion, qk = qk�1 Exp(!k�t).

III. DIFFERENTIATION RULES ON MANIFOLDS

For all the typical manifolds M that we use, we can deter-
mine closed forms for the elementary Jacobians of inversion,
composition, exponentiation and action. Moreover, some of
these forms can be related to the adjoint AdX , which becomes
a central block of the differentiation process. Other forms for
Log, � and  can be easily derived from them. Once these
forms or ‘blocks’ are found, all other Jacobians follow by
the chain rule. Except for the so-called left Jacobian, which


























ifdelta I acquiredhow

g R

5



10

we also present below, all Jacobians developed here are right-
Jacobians, i.e., defined by (41a). By following the hints here,
the interested reader should find no particular difficulties in
developing the left-Jacobians. For the reader not willing to do
this effort, equation (46) can be used to this end, since

E
Df(X )

DX = Adf(X )

X
Df(X )

DX AdX
�1

. (57)

We use the notations J
f(X )
X , Df(X )

DX and J
Y
X , DY

DX .
We notice also that AdX

�1 should rather be implemented
by AdX�1 —see (33, 34) and the comment below them.

A. The chain rule

For Y = f(X ) and Z = g(Y) we have Z = g(f(X )). The
chain rule simply states,

DZ
DX =

DZ
DY

DY
DX or J

Z
X = J

Z
Y J

Y
X . (58)

We prove it here for the right Jacobian using (43) thrice,

g(f(X ))� J
Z
X ⌧  g(f(X � ⌧ ))! g(f(X ) � J

Y
X ⌧ )

! g(f(X ))� J
Z
YJ

Y
X ⌧

with the arrows indicating limit as ⌧ ! 0, and so J
Z
X =

J
Z
YJ

Y
X . The proof for the left and crossed Jacobians is akin,

using respectively (45, 49, 50). Notice that when mixing right,
left and crossed Jacobians, we need to chain also the reference
frames, as in e.g.

Z
DZ

EDX =
Z

DZ
YDY

Y
DY

EDX =
Z

DZ
EDY

E
DY

EDX (59)
E
DZ

X DX =
E
DZ

YDY

Y
DY

X DX =
E
DZ

EDY

E
DY

X DX , (60)

where the first identity of (59) is proven by writing,

g(f(E⌧ � X ))
(50)����!

E⌧!0
g(f(X ))�

Z
DZ

EDX
E⌧ ;

g(f(E⌧ � X ))
(50)����!

E⌧!0
g

✓
f(X ) �

Y
DY

EDX
E⌧

◆
!

(43)����!
E⌧!0

g(f(X ))�
Z

DZ
YDY

Y
DY

EDX
E⌧ ,

and identifying (59) in the first and third rows.

B. Elementary Jacobian blocks

1) Inverse: We define with (41a)

J
X�1

X ,
X

DX�1

DX 2 R
m⇥m

. (61)

This can be determined from the adjoint using (20) and (31),

J
X�1

X = lim
⌧!0

Log((X�1)�1(X Exp(⌧ ))�1)

⌧

= lim
⌧!0

Log(X Exp(�⌧ )X�1)

⌧

= lim
⌧!0

(X (�⌧ )^X�1)_

⌧
= �AdX . (62)

2) Composition: We define with (41a)

J
X�Y
X ,

X
DX � Y
DX 2 R

m⇥m (63)

J
X�Y
Y ,

Y
DX � Y
DY 2 R

m⇥m
, (64)

and using (20, 31) as above and (33),

J
X�Y
X = lim

⌧!0

Log((XY)�1(X Exp(⌧ )Y))

⌧

= lim
⌧!0

Log(Y�1 Exp(⌧ )Y)

⌧

= lim
⌧!0

(Y�1⌧^Y)_

⌧
= AdY

�1 (65)

J
X�Y
Y = · · · = I (66)

3) Jacobians of M: We define the right Jacobian of M as
the right Jacobian of X = Exp(⌧ ), i.e., for ⌧ 2 R

m,

Jr(⌧ ) ,
⌧
D Exp(⌧ )

D⌧
2 R

m⇥m
, (67)

which is defined with (41a). The right Jacobian maps vari-
ations of the argument ⌧ into variations in the local tangent
space at Exp(⌧ ). From (41a) it is easy to prove that, for small
�⌧ , the following approximations hold,

Exp(⌧ + �⌧ ) ⇡ Exp(⌧ ) Exp(Jr(⌧ )�⌧ ) (68)
Exp(⌧ ) Exp(�⌧ ) ⇡ Exp(⌧ + J

�1
r (⌧ ) �⌧ ) (69)

Log(Exp(⌧ ) Exp(�⌧ )) ⇡ ⌧ + J
�1
r (⌧ ) �⌧ . (70)

Complementarily, the left Jacobian of M is defined by,

Jl(⌧ ) ,
E
D Exp(⌧ )

D⌧
2 R

m⇥m
, (71)

using the left Jacobian (44), leading to the approximations

Exp(⌧ + �⌧ ) ⇡ Exp(Jl(⌧ )�⌧ ) Exp(⌧ ) (72)
Exp(�⌧ ) Exp(⌧ ) ⇡ Exp(⌧ + J

�1
l (⌧ ) �⌧ ) (73)

Log(Exp(�⌧ ) Exp(⌧ )) ⇡ ⌧ + J
�1
l (⌧ ) �⌧ . (74)

The left Jacobian maps variations of the argument ⌧ into vari-
ations in the global tangent space or Lie algebra. From (68, 72)
we can relate left- and right- Jacobians with the adjoint,

AdExp(⌧ ) = Jl(⌧ )Jr
�1(⌧ ) . (75)

Also, the chain rule allows us to relate Jr and Jl,

Jr(�⌧ ) , J
Exp(�⌧ )
�⌧ = J

Exp(�⌧ )
⌧ J

⌧
�⌧ = J

Exp(⌧ )�1

⌧ (�I)

= �J
Exp(⌧ )�1

Exp(⌧ ) J
Exp(⌧ )
⌧ = AdExp(⌧ )Jr(⌧ )

= Jl(⌧ ) . (76)

Closed forms of Jr, Jr
�1, Jl and Jl

�1 exist for the typical
manifolds in use. See the appendices for reference.

4) Group action: For X 2M and v 2 V , we define with
(41a)

J
X·v
X ,

X
DX · v

DX (77)

J
X·v
v ,

v
DX · v

Dv
. (78)

Since group actions depend on the set V , these expressions
cannot be generalized. See the appendices for reference.



11

C. Useful, but deduced, Jacobian blocks
1) Log map: For ⌧ = Log(X ), and from (70),

J
Log(X )
X = J

�1
r (⌧ ) . (79)

2) Plus and minus: We have

J
X�⌧
X = J

X�(Exp(⌧ ))
X = AdExp(⌧ )

�1 (80)

J
X�⌧
⌧ = J

X�(Exp(⌧ ))
Exp(⌧ ) J

Exp(⌧ )
⌧ = Jr(⌧ ) (81)

and given Z = X�1 � Y and ⌧ = Y  X = Log(Z),

J
Y X
X = J

Log(Z)
Z J

Z
X�1J

X�1

X = �J
�1
l (⌧ ) (82)

J
Y X
Y = J

Log(Z)
Z J

Z
Y = J

�1
r (⌧ ) . (83)

where the former is proven here

J
Y X
X = J

Log(X�1�Y)
(X�1�Y) J

(X�1�Y)
X�1 J

X�1

X

(79, 65, 62) = J
�1
r (⌧ ) AdY

�1 (�AdX )

(33, 34) = �J
�1
r (⌧ )AdY�1X

= �J
�1
r (⌧ )AdExp(⌧ )

�1

(75) = �J
�1
l (⌧ ) .

IV. COMPOSITE MANIFOLDS

At the price of losing some consistency with the Lie theory,
but at the benefit of obtaining some advantages in notation and
manipulation, one can consider large and heterogeneous states
as manifold composites (or bundles).

A composite manifold M = hM1, · · · , MM i is no less
than the concatenation of M non-interacting manifolds. This
stems from defining identity, inverse and composition acting
on each block of the composite separately,

E⇧ ,

2

64
E1
...

EM

3

75 , X ⇧ ,

2

64
X�1

...
X�1

M

3

75 , X ⇧ Y ,

2

64
X � Y1

...
XM � YM

3

75 ,

(84)

thereby fulfilling the group axioms, as well as a non-
interacting retraction map, which we will also note as “ex-
ponential map” for the sake of unifying notations (notice the
angled brackets),

Exph⌧ i ,

2

64
Exp(⌧1)

...
Exp(⌧M )

3

75 , LoghX i ,

2

64
Log(X )

...
Log(XM )

3

75 , (85)

thereby ensuring smoothness. These yield the composite’s
right- plus and minus (notice the diamond symbols),

X ⌧ , X ⇧ Exph⌧ i (86)
Y X , LoghX ⇧ ⇧ Yi . (87)

The key consequence of these considerations (see Ex. 7) is
that new derivatives can be defined,6 using and ,

Df(X )

DX , lim
⌧!0

f(X ⌧ ) f(X )

⌧
. (88)

6We assume here right derivatives, but the same applies to left derivatives.

Example 7: SE(n) vs. T (n)⇥SO(n) vs. hRn
, SO(n)i

We consider the space of translations t 2 R
n and rota-

tions R 2 SO(n). We have for this the well-known SE(n)
manifold of rigid motions M = [ R t

0 1 ] (see Apps. C and
D), which can also be constructed as T (n)⇥SO(n) (see
Apps. A, B and E). These two are very similar, but have
different tangent parametrizations: while SE(n) uses ⌧ =
(✓, ⇢) with M = exp(⌧^), T (n)⇥SO(n) uses ⌧ = (✓,p)
with M = exp(p^) exp(✓^). They share the rotational
part ✓, but clearly ⇢ 6= p (see [11, pag. 35] for further
details). In short, SE(n) performs translation and rotation
simultaneously as a continuum, while T (n) ⇥ SO(n)
performs chained translation+rotation. In radical contrast,
in the composite hRn

, SO(n)i rotations and translations
do not interact at all. By combining composition with
Exp() we obtain the (right) plus operators,

SE(n) : M� ⌧ =


RExp(✓) t + RV(✓)⇢

0 1

�

T (n)⇥SO(n) : M� ⌧ =


RExp(✓) t + Rp

0 1

�

hRn
, SO(n)i : M ⌧ =


t + p

RExp(✓)

�

where either � may be used for the system dynamics,
e.g. motion integration, but usually not , which might
however be used to model perturbations. Their respective
minus operators read,

SE(n) : M2  M1 =


V
�1
1 R

>
1 (p2 � p1)

Log(R>1 R2)

�

T (n)⇥SO(n) : M2  M1 =


R
>
1 (p2 � p1)

Log(R>1 R2)

�

hRn
, SO(n)i : M2 M1 =


p2 � p1

Log(R>1 R2)

�
,

where now, interestingly, can be used to evaluate
errors and uncertainty. This makes , valuable op-
erators for computing derivatives and covariances.

With this derivative, Jacobians of functions f : M ! N
acting on composite manifolds can be determined in a per-
block basis, which yields simple expressions requiring only
knowledge on the manifold blocks of the composite,

Df(X )

DX =

2

64

Df1

DX1
· · · Df1

DXM

...
. . .

...
DfN

DX1
· · · DfN

DXM

3

75 , (89)

where Dfi

DXj
are each computed with (41a). For small values

of ⌧ the following holds,

f(X ⌧ ) ���!
⌧!0

f(X )
Df(X )

DX ⌧ 2 N . (90)

When using these derivatives, covariances and uncertainty
propagation must follow the convention. In particular, the



12

covariance matrix (52) becomes

⌃X , E[(X X̄ )(X X̄ )>] 2 R
n⇥n

, (91)

for which the linearized propagation (55) using (88) applies.

V. LANDMARK-BASED LOCALIZATION AND MAPPING

We provide three applicative examples of the theory for
robot localization and mapping. The first one is a Kalman
filter for landmark-based localization. The second one is a
graph-based smoothing method for simultaneous localization
and mapping. The third one adds sensor self-calibration. They
are based on a common setup, explained as follows.

We consider a robot in the plane (see Section V-D for the
3D case) surrounded by a small number of punctual landmarks
or beacons. The robot receives control actions in the form of
axial and angular velocities and is able to measure the location
of the beacons with respect to its own reference frame.

The robot pose is in SE(2) (App. C) and the beacon
positions in R

2 (App. E),

X =


R t

0 1

�
2 SE(2) , bk =


xk

yk

�
2 R

2
.

The control signal u is a twist in se(2) comprising longitu-
dinal velocity v and angular velocity !, with no lateral velocity
component, integrated over the sampling time �t. The control
is corrupted by additive Gaussian noise w ⇠ N (0,W). This
noise accounts for possible lateral wheel slippages us through
a value of �s 6= 0,

u =

2

4
uv

us

u!

3

5 =

2

4
v �t

0
! �t

3

5+ w 2 se(2) (92)

W =

2

4
�

2
v�t 0 0
0 �

2
s�t 0

0 0 �
2
w�t

3

5 2 R
3⇥3

. (93)

At the arrival of a control uj at time j, the robot pose is
updated with (56),

Xj = Xi � uj , Xi Exp(uj) . (94)

Landmark measurements are of the range and bearing type,
though they are put in Cartesian form for simplicity. Their
noise n ⇠ N (0,N) is zero mean Gaussian,

yk = X�1 · bk + n = R
>(bk � t) + n 2 R

2 (95)

N =


�

2
x 0
0 �

2
y

�
2 R

2⇥2
, (96)

where we notice the rigid motion action X�1 ·bk (see App. C).

A. Localization with error-state Kalman filter on manifold
We initially consider the beacons bk situated at known

positions. We define the pose to estimate as X̂ 2 SE(2). The
estimation error �x and its covariance P are expressed in the
tangent space at X̂ with (51, 52),

�x , X  X̂ 2 R
3 (97)

P , E[(X  X̂ )(X  X̂ )>] 2 R
3⇥3

. (98)

X1

X2

X3

b4

b5

b6

Figure 12. SAM factor graph with 3 poses and 3 beacons. Each measurement
contributes a factor in the graph. There are 2 motion factors (black) and 5
beacon factors (gray). A prior factor on X1 provides global observability.

At each robot motion we apply ESKF prediction,

X̂j = X̂i � uj (99)
Pj = FPi F

> + GWj G
>

, (100)

with the Jacobians computed from the blocks in App. C,

F , J
Xj

Xi
= J

X̂i�uj

X̂i
= AdExp(uj)

�1

G , J
Xj
uj = J

X̂i�uj
uj = Jr(uj) .

At each beacon measurement yk we apply ESKF correction,

Innovation : z = yk � X̂�1 · bk

Innovation cov. : Z = HPH
> + N

Kalman gain : K = PH
>

Z
�1

Observed error : �x = Kz

State update : X̂  X̂ � �x (101)
Cov. update : P P�KZK

>
, (102)

with the Jacobian computed from the blocks in App. C,

H , J
X�1·bk
X = J

X�1·bk

X�1 J
X�1

X

=
⇥
R
>

R
> [1]⇥ bk

⇤ �R [1]⇥ t

0 �1

�

= �
⇥
I R

> [1]⇥ (bk � t)
⇤

.

Notice that the only changes with respect to a regular EKF
are in (99) and (101), where regular + are substituted by �.
The Jacobians on the contrary are all computed using the Lie
theory (see App. C). Interstingly, their usage is the same as
in standard EKF — see e.g. the equation of the Kalman gain,
which is the standard K = PH

>(HPH
> + N)�1.

B. Smooting and Mapping with graph-based optimization
We consider now the problem of smoothing and mapping

(SAM), where the variables to estimate are the beacons’
locations and the robot’s trajectory. The solver of choice is
a graph-based iterative least-squares optimizer. For simplicity,
we assume the trajectory comprised of three robot poses
{X1 · · · X3}, and a world with three beacons {b4 · · ·b6}. The
problem state is the composite

X = hX1, X2, X3,b4,b5,b6i, Xi 2 SE(2), bk 2 R
2
.

(103)

The resulting factor graph [12] is shown in Fig. 12. Each
prior or measurement contributes a factor in the graph. Motion
measurements from pose i to j are derived from (94), while
measurements of beacon k from pose i respond to (95),



13

uij = Xj  Xi + wij = Log(X�1
i Xj) + wij (104)

yik = X�1
i · bk + nik . (105)

Each factor comes with an information matrix, ⌦1 , W
�1
1 ,

⌦ij , W
�1
ij and ⌦ik , N

�1
ik . The expectation residuals are,

prior residual : r1(X ) = ⌦
>/2
1 (X1  X̂1)

motion residual : rij(X ) = ⌦
>/2
ij (uij � (X̂j  X̂i))

beacon residual : rik(X ) = ⌦
>/2
ik (yik � X̂�1

i · b̂k) .

The optimum update step �x stems from minimizing

�x
⇤ = arg min

�x

X

p2P
rp(X �x)>rp(X �x) (106)

with P = {1, 12, 23, 14, 15, 25, 26, 36} the set of node pairs
of each measurement (see Fig. 12). The problem is solved
iteratively as follows. Each residual in the sum (106) is
linearized to rp(X �x) ⇡ rp(X ) J

rp
X �x following (90),

where J
rp
X are sparse Jacobians. The non-zero blocks of these

Jacobians, that is J
r1
X1

, J
rij
Xi

, J
rij
Xj

, J
rik
Xi

and J
rik
bk

, can be easily
computed following the methods in Section V-A, and noticing
that by definition J

f(X��x)
�x |�x=0 = J

f(X��x)
X |�x=0 = J

f(X )
X .

Building the total Jacobian matrix and residual vector,

J =

2

66666666664

J
r1
X1

0 0 0 0 0

J
r12
X1

J
r12
X2

0 0 0 0

0 J
r23
X2

J
r23
X3

0 0 0

J
r14
X1

0 0 J
r14
b4

0 0

J
r15
X1

0 0 0 J
r15
b5

0

0 J
r25
X2

0 0 J
r25
b5

0

0 J
r26
X2

0 0 0 J
r26
b6

0 0 J
r36
X3

0 0 J
r36
b6

3

77777777775

r =

2

66666666664

r1

r12

r23

r14

r15

r25

r26

r36

3

77777777775

(107)

the linearized (106) is now transformed [12] to minimizing

�x
⇤ = arg min

�x
kr + J�xk2. (108)

This is solved via least-squares using the pseudoinverse of
J (for large problems, QR [12], [13] or Cholesky [14], [15]
factorizations are required),

�x
⇤ = �(J>J)�1

J
>
r , (109)

yielding the optimal step �x
⇤ used to update the state,

X  X �x
⇤

. (110)

The procedure is iterated until convergence.
We highlight here the use of the composite notation in (103),

which allows block-wise definitions of the Jacobian (107) and
the update (110). We also remark the use of the SE(2) manifold
in the motion and measurement models, as we did in the ESKF
case in Section V-A.

C. Smoothing and mapping with self-calibration

We consider the same problem as above but with a motion
sensor affected by an unknown calibration bias c = (cv, c!)>,

so that the control is now ũ = (v�t+ cv, 0, !�t+ c!)>+w.
We define the bias correction function c(),

u = c (ũ, c) ,

2

4
ũv � cv

ũs

ũ! � c!

3

5 2 R
3 ⇠= se(2) . (111)

The state composite is augmented with the unknowns c,

X = hc, X1, X2, X3,b4,b5,b6i ,

c 2 R
2
, Xi 2 SE(2), bk 2 R

2
,

and the motion residual becomes

rij(X ) = ⌦
>/2
ij

�
c (ũij , c)� (X̂j  X̂i)

�
.

The procedure is as in Section V-B above, and just the total
Jacobian is modified with an extra column on the left,

J =

2

66666666664

0 J
r1
X1

0 0 0 0 0

J
r12
c J

r12
X1

J
r12
X2

0 0 0 0

J
r23
c 0 J

r23
X2

J
r23
X3

0 0 0

0 J
r14
X1

0 0 J
r14
b4

0 0

0 J
r15
X1

0 0 0 J
r15
b5

0

0 0 J
r25
X2

0 0 J
r25
b5

0

0 0 J
r26
X2

0 0 0 J
r26
b6

0 0 0 J
r36
X3

0 0 J
r36
b6

3

77777777775

,

where J
rij
c = ⌦

>/2
ij J

c(uij ,c)
c , with J

c(uij ,c)
c the 3⇥2 Jacobian

of (111). The optimal solution is obtained with (109, 110). The
resulting optimal state X includes an optimal estimate of c,
that is, the self-calibration of the sensor bias.

D. 3D implementations
It is surprisingly easy to bring all the examples above to

3D. It suffices to define all variables in the correct spaces:
X 2 SE(3) and u 2 R

6 ⇠= se(3) (App. D), and {bk,y} 2 R
3

(App. E). Jacobians and covariances matrices will follow with
appropriate sizes. The interest here is in realizing that all the
math in the algorithms, that is from (97) onwards, is exactly
the same for 2D and 3D: the abstraction level provided by the
Lie theory has made this possible.

VI. CONCLUSION

We have presented the essential of Lie theory in a form that
should be useful for an audience skilled in state estimation,
with a focus on robotics applications. This we have done
through several initiatives:

First, a selection of materials that avoids abstract mathe-
matical concepts as much as possible. This helps to focus Lie
theory to make its tools easier to understand and to use.

Second, we chose a didactical approach, with significant
redundancy. The main text is generic and covers the abstract
points of Lie theory. It is accompanied by boxed examples,
which ground the abstract concepts to particular Lie groups,
and plenty of figures with very verbose captions.

Third, we have promoted the usage of handy operators,
such as the capitalized Exp() and Log() maps, and the plus
and minus operators �,  , , . They allow us to work on
the Cartesian representation of the tangent spaces, producing



14

formulas for derivatives and covariance handling that greatly
resemble their counterparts in standard vector spaces.

Fourth, we have made special emphasis on the definition,
geometrical interpretation, and computation of Jacobians. For
this, we have introduced notations for the Jacobian matrices
and covariances that allow a manipulation that is visually
powerful. In particular, the chain rule is clearly visible with
this notation. This helps to build intuition and reducing errors.

Fifth, we present in the appendices that follow an extensive
compendium of formulas for the most common groups in
robotics. In 2D, we present the rotation groups of unit complex
numbers S

1 and rotation matrices SO(2), and the rigid motion
group SE(2). In 3D, we present the groups of unit quaternions
S

3 and rotation matrices SO(3), both used for rotations, and
the rigid motion group SE(3). We also present the translation
groups for any dimension, which can be implemented by either
the standard vector space R

n under addition, or by the matrix
translation group T (n) under multiplication.

Sixth, we have presented some applicative examples to
illustrate the capacity of Lie theory to solve robotics problems
with elegance and precision. The somewhat naive concept of
composite group helps to unify heterogeneous state vectors
into a Lie-theoretic form.

Finally, we accompany this text with the new C++ library
manif [7] implementing the tools described here. manif can
be found at https://github.com/artivis/manif. The applications
in Section V are demonstrated in manif as examples.

Though we do not introduce any new theoretical material,
we believe the form in which Lie theory is here exposed
will help many researchers enter the field for their future
developments. We also believe this alone represents a valuable
contribution.

APPENDIX A
THE 2D ROTATION GROUPS S

1 AND SO(2)

The Lie group S
1 is the group of unit complex numbers

under the complex product. Its topology is the unit circle, or
the unit 1-sphere, and therefore the name S

1. The group, Lie
algebra and vector elements have the form,

z = cos ✓ + i sin ✓, ⌧
^ = i✓, ⌧ = ✓ . (112)

Inversion and composition are achieved by conjugation z
�1 =

z
⇤, and product za � zb = za zb.
The group SO(2) is the group of special orthogonal matrices

in the plane, or rotation matrices, under matrix multiplication.
Group, Lie algebra and vector elements have the form,

R =
⇥

cos ✓ � sin ✓
sin ✓ cos ✓

⇤
, ⌧

^ = [✓]⇥ ,
⇥

0 �✓
✓ 0

⇤
, ⌧ = ✓ . (113)

Inversion and composition are achieved by transposition
R
�1 = R

>, and product Ra �Rb = Ra Rb.
Both groups rotate 2-vectors, and they have isomorphic

tangent spaces. We thus study them together.

A. Exp and Log maps
Exp and Log maps may be defined for complex numbers of

S
1 and rotation matrices of SO(2). For S

1 we have,

z = Exp(✓) = cos ✓ + i sin ✓ 2 C (114)
✓ = Log(z) = arctan(Im(z), Re(z)) 2 R , (115)

where (114) is the Euler formula, whereas for SO(2),

R = Exp(✓) =


cos ✓ � sin ✓

sin ✓ cos ✓

�
2 R

2⇥2 (116)

✓ = Log(R) = arctan(r21, r11) 2 R . (117)

B. Inverse, composition, exponential map
We consider generic 2D rotation elements, and note them

with the sans-serif font, Q,R. We have

R(✓)�1 = R(�✓) (118)
Q � R = R � Q , (119)

i.e., planar rotations are commutative. It follows that

Exp(✓1 + ✓2) = Exp(✓1) � Exp(✓2) (120)
Log(Q � R) = Log(Q) + Log(R) (121)

Q R = ✓Q � ✓R . (122)

C. Jacobian blocks
Since our defined derivatives map tangent vector spaces, and

these spaces coincide for the planar rotation manifolds of S
1

and SO(2), i.e., ✓ = Log(z) = Log(R), it follows that the
Jacobians are independent of the representation used (z or R).

1) Adjoint and other trivial Jacobians: From (41a), Sec-
tion III-B and the properties above, the following scalar
derivative blocks become trivial,

AdR = 1 2 R (123)

J
R�1

R = �1 2 R (124)
J
Q�R
Q = J

Q�R
R = 1 2 R (125)

Jr(✓) = Jl(✓) = 1 2 R (126)
J
R�✓
R = J

R�✓
✓ = 1 2 R (127)

J
Q R
Q = �J

Q R
R = 1 2 R (128)

2) Rotation action: For the action R · v we have,

J
R·v
R = lim

✓!0

RExp(✓)v �Rv

✓

= lim
✓!0

R(I + [✓]⇥)v �Rv

✓

= lim
✓!0

R [✓]⇥ v

✓
= R [1]⇥ v 2 R

2⇥1 (129)

and

J
R·v
v =

DRv

Dv
= R 2 R

2⇥2
. (130)

APPENDIX B
THE 3D ROTATION GROUPS S

3 AND SO(3)

The Lie group S
3 is the group of unit quaternions under

quaternion multiplication. Its topology is the unit 3-sphere in
R

4, and therefore its name S
3. Quaternions (please consult

[8] for an in-depth reference) may be represented by either of
these equivalent forms,

q = w + ix + jy + kz = w + v 2 H

=
⇥
w x y z

⇤>
=


w

v

�
2 H ,

(131)



15

where w, x, y, z 2 R, and i, j, k are three unit imaginary
numbers such that i

2 = j
2 = k

2 = ijk = �1. The scalar w is
known as the scalar or real part, and v 2 Hp as the vector or
imaginary part. We note Hp the set of pure quaternions, i.e., of
null scalar part, with dimension 3. Inversion and composition
are achieved by conjugation q

�1 = q
⇤, where q

⇤ , w� v is
the conjugate, and product qa � qb = qa qb.

The group SO(3) is the group of special orthogonal matrices
in 3D space, or rotation matrices, under matrix multiplication.
Inversion and composition are achieved with transposition and
product as in all groups SO(n).

Both groups rotate 3-vectors. They have isomorphic tangent
spaces whose elements are identifiable with rotation vectors in
R

3, so we study them together. It is in this space R
3 where we

define the vectors of rotation rate ! , u!, angle-axis ✓ , u✓,
and all perturbations and uncertainties.

The quaternion manifold S
3 is a double cover of SO(3),

i.e., q and �q represent the same rotation R. The first cover
corresponds to quaternions with positive real part w > 0. The
two groups can be considered isomorphic up to the first cover.

A. Exp and Log maps

The Exp and Log maps may be defined for quaternions
of S

3 and rotation matrices of SO(3). For quaternions q =
(w,v) 2 H we have (see Ex. 5),

q = Exp(✓u) , cos(✓/2) + u sin(✓/2) 2 H (132)

✓u = Log(q) , 2v
arctan(kvk, w)

kvk 2 R
3

. (133)

We can avoid eventual problems due to the double cover of q

by ensuring that its scalar part w is positive before doing the
Log. If it is not, we can substitute q by �q before the Log.

For rotation matrices we have (see Ex. 4),

R = Exp(✓u) , I + sin ✓ [u]⇥ + (1� cos ✓) [u]2⇥ 2 R
3⇥3

(134)

✓u = Log(R) , ✓(R�R
>)_

2 sin ✓
2 R

3
, (135)

with ✓ = cos�1
� trace(R)�1

2

�
.

B. Rotation action

Given the expressions above for the quaternion and the
rotation matrix, the rotation action of quaternions on 3-vectors
is performed by the double quaternion product,

x
0 = qxq

⇤ (136)

while rotation matrices use a single matrix product,

x
0 = Rx . (137)

Both correspond to a right-hand rotation of ✓ rad around the
axis u. Identifying in them x and x

0 yields the identity

R(q)=

"
w2+x2�y2�z2 2(xy�wz) 2(xz+wy)

2(xy+wz) w2�x2+y2�z2 2(yz�wx)

2(xz�wy) 2(yz+wx) w2�x2�y2+z2

#
(138)

C. Elementary Jacobian blocks

Since our defined derivatives map tangent vector spaces,
and these spaces coincide for the 3D rotation manifolds of S

3

and SO(3), i.e., ✓ = Log(q) = Log(R), it follows that the
Jacobians are independent of the representation used (q or R).
We thus consider generic 3D rotation elements and note them
with the sans-serif font R.

1) Adjoint: We have from (31)

AdR✓ = (R [✓]⇥R
>)_ = ([(R✓)]⇥)_ = R✓

therefore

AdR = R , (139)

which means, just to clarify it once again, that Adq = R(q),
see (138), and AdR = R.

2) Inversion, composition: We have from Section III-B,

J
R�1

R = �AdR = �R (140)
J
QR
Q = AdR

�1 = R
> (141)

J
QR
R = I . (142)

3) Right and left Jacobians: They admit the closed forms
[11, pag. 40],

Jr(✓) = I� 1�cos ✓

✓2
[✓]⇥ +

✓�sin ✓

✓3
[✓]2⇥ (143)

Jr
�1(✓) = I+

1

2
[✓]⇥+

✓
1

✓2
� 1+cos ✓

2✓ sin ✓

◆
[✓]2⇥ (144)

Jl(✓) = I +
1� cos ✓

✓2
[✓]⇥ +

✓ � sin ✓

✓3
[✓]2⇥ (145)

Jl
�1(✓) = I� 1

2
[✓]⇥ +

✓
1

✓2
� 1 + cos ✓

2✓ sin ✓

◆
[✓]2⇥ (146)

where we can observe that

Jl = Jr
>

, Jl
�1 = Jr

�>
. (147)

4) Right- plus and minus: We have for ✓ = Q R,

J
R�✓
R = R(✓)> J

R�✓
✓ = Jr(✓) (148)

J
Q R
Q = J

�1
r (✓) J

Q R
R = �J

�1
l (✓) (149)

5) Rotation action: We have

J
R·v
R , lim

✓!0

(R� ✓)v �Rv

✓
=

lim
✓!0

RExp(✓)v �Rv

✓
= lim

✓!0

R(I+[✓]⇥)v �Rv

✓

= lim
✓!0

R [✓]⇥ v

✓
= lim

✓!0

�R [v]⇥ ✓

✓
= �R [v]⇥

(150)

where we used the properties Exp(✓) ⇡ I+[✓]⇥ and [a]⇥ b =
� [b]⇥ a. The second Jacobian yields,

J
R·v
v , lim

@v!0

R(v + @v)�Rv

@v
= R . (151)



16

APPENDIX C
THE 2D RIGID MOTION GROUP SE(2)

We write elements of the rigid motion group SE(2) as

M =


R t

0 1

�
2 SE(2) ⇢ R

3⇥3
, (152)

with R 2 SO(2) a rotation and t 2 R
2 a translation. The

Lie algebra and vector tangents are formed by elements of the
type

⌧^ =


[✓]⇥ ⇢
0 0

�
2 se(2) , ⌧ =


⇢
✓

�
2 R

3
. (153)

A. Inverse, composition
Inversion and composition are performed respectively with

matrix inversion and product,

M
�1 =


R
> �R

>
t

0 1

�
(154)

Ma Mb =


RaRb ta + Ratb

0 1

�
. (155)

B. Exp and Log maps
Exp and Log are implemented via exponential maps directly

from the scalar tangent space R
3 ⇠= se(2) = TSE(2) — see

[5] for the derivation,

M = Exp(⌧ ) ,

Exp(✓) V(✓) ⇢

0 1

�
(156)

⌧ = Log(M) ,

V
�1(✓) t

Log(R)

�
. (157)

with

V(✓) =
sin ✓

✓
I +

1� cos ✓

✓
[1]⇥ . (158)

C. Jacobian blocks
1) Adjoint: The adjoint is easily found from (31) using the

fact that planar rotations commute,

AdM⌧ = (M⌧^M�1)_ =


R⇢� [✓]⇥ t

✓

�
= AdM


⇢
✓

�
,

leading to

AdM =


R � [1]⇥ t

0 1

�
. (159)

2) Inversion, composition: We have from Section III-B,

J
M�1

M = �AdM =


�R [1]⇥ t

0 �1

�
(160)

J
MaMb
Ma

= AdMb

�1 =


R
>
b R

>
b [1]⇥ tb

0 1

�
(161)

J
MaMb
Mb

= I . (162)

3) Right and left Jacobians: We have from [11, pag. 36],

Jr =


sin ✓/✓ (1�cos ✓)/✓ (✓⇢1�⇢2+⇢2 cos ✓�⇢1 sin ✓)/✓2

(cos ✓�1)/✓ sin ✓/✓ (⇢1+✓⇢2�⇢1 cos ✓�⇢2 sin ✓)/✓2

0 0 1

�

(163)

Jl =


sin ✓/✓ (cos ✓�1)/✓ (✓⇢1+⇢2�⇢2 cos ✓�⇢1 sin ✓)/✓2

(1�cos ✓)/✓ sin ✓/✓ (�⇢1+✓⇢2+⇢1 cos ✓�⇢2 sin ✓)/✓2

0 0 1

�
.

(164)

4) Rigid motion action: We have the action on points p,

M · p , t + Rp , (165)

therefore and since for ⌧ ! 0 we have Exp(⌧ )! I + ⌧^,

J
M·p
M = lim

⌧!0

MExp(⌧ ) · p�M · p
⌧

=
⇥
R R [1]⇥ p

⇤

(166)
J
M·p
p = R . (167)

APPENDIX D
THE 3D RIGID MOTION GROUP SE(3)

We write elements of the 3D rigid motion group SE(3) as

M =


R t

0 1

�
2 SE(3) ⇢ R

4⇥4
, (168)

with R 2 SO(3) a rotation matrix and t 2 R
3 a translation

vector. The Lie algebra and vector tangents are formed by
elements of the type

⌧^ =


[✓]⇥ ⇢
0 0

�
2 se(3) , ⌧ =


⇢
✓

�
2 R

6
. (169)

A. Inverse, composition

Inversion and composition are performed respectively with
matrix inversion and product,

M
�1 =


R
> �R

>
t

0 1

�
(170)

Ma Mb =


RaRb ta + Ratb

0 1

�
. (171)

B. Exp and Log maps

Exp and Log are implemented via exponential maps directly
from the vector tangent space R

6 ⇠= se(3) = TSE(3) — see
[5] for the derivation,

M = Exp(⌧ ) ,

Exp(✓) V(✓) ⇢

0 1

�
(172)

⌧ = Log(M) ,

V
�1(✓) t

Log(R)

�
. (173)

with (recall for Log(M) that ✓ = ✓u = Log(R))

V(✓) = I +
1� cos ✓

✓2
[✓]⇥ +

✓ � sin ✓

✓3
[✓]2⇥ (174)

which, notice, matches (145) exactly.

C. Jacobian blocks

1) Adjoint: We have (see Ex. 6),

AdM⌧ = (M⌧^M�1)_ =


R⇢ + [t]⇥R✓

R✓

�
= AdM


⇢
✓

�

therefore,

AdM =


R [t]⇥R

0 R

�
2 R

6⇥6
. (175)



17

2) Inversion, composition: We have from Section III-B,

J
M�1

M = �

R [t]⇥R

0 R

�
(176)

J
MaMb
Ma

=


R
>
b �R

>
b [tb]⇥

0 R
>
b

�
(177)

J
MaMb
Mb

= I6 . (178)

3) Right and left Jacobians: Closed forms of the left
Jacobian and its inverse are given by Barfoot in [10],

Jl(⇢, ✓) =
h

Jl(✓) Q(⇢,✓)
0 Jl(✓)

i
(179a)

J
�1
l (⇢, ✓) =

h
J�1
l (✓) �J�1

l (✓)Q(⇢,✓)J�1
l (✓)

0 J�1
l (✓)

i
(179b)

where Jl(✓) is the left Jacobian of SO(3), see (145), and

Q(⇢, ✓) =
1

2
⇢⇥ +

✓�sin ✓

✓3
(✓⇥⇢⇥ + ⇢⇥✓⇥ + ✓⇥⇢⇥✓⇥)

�
1� ✓2

2 �cos ✓

✓4
(✓2
⇥⇢⇥ + ⇢⇥✓2

⇥ � 3✓⇥⇢⇥✓⇥)

� 1

2

 
1� ✓2

2 � cos ✓

✓4
� 3

✓ � sin ✓ � ✓3

6

✓5

!

⇥ (✓⇥⇢⇥✓2
⇥ + ✓2

⇥⇢⇥✓⇥) . (180)

The right Jacobian and its inverse are obtained using (76), that
is, Jr(⇢, ✓) = Jl(�⇢,�✓) and J

�1
r (⇢, ✓) = J

�1
l (�⇢,�✓).

4) Rigid motion action: We have the action on points p,

M · p , t + Rp , (181)

therefore and since for ⌧ ! 0 we have Exp(⌧ )! I + ⌧^,

J
M·p
M = lim

⌧!0

MExp(⌧ ) · p�M · p
⌧

=
⇥
R �R [p]⇥

⇤

(182)
J
M·p
p = R . (183)

APPENDIX E
THE TRANSLATION GROUPS (Rn

, +) AND T (n)

The group (Rn
, +) is the group of vectors under addition

and can be regarded as a translation group. We deem it trivial
in the sense that the group elements, the Lie algebra, and the
tangent spaces are all the same, so t = t

^ = Exp(t). Its
equivalent matrix group (under multiplication) is the transla-
tion group T (n), whose group, Lie algebra and tangent vector
elements are,

T ,

I t

0 1

�
2 T (n), t

^ ,

0 t

0 0

�
2 t(n), t 2 R

n
.

Equivalence is easily verified by observing that T(0) = I,
T(�t) = T(t)�1, and that the commutative composition

T1T2 =


I t1 + t2

0 1

�
,

effectively adds the vectors t1 and t2 together. Since the sum
in R

n is commutative, so is the composition product in T (n).
Since T (n) is a subgroup of SE(n) with R = I, we can easily
determine its exponential map by taking (156, 172) with R = I

and generalizing to any n,

Exp : R
n ! T (n) ; T = Exp(t) =


I t

0 1

�
. (184)

The T (n) exponential can be obtained also from the Taylor
expansion of exp(t^) noticing that (t^)2 = 0. This serves as
immediate proof for the equivalent exponential of the (Rn

, +)
group, which is the identity,

Exp : R
n ! R

n
t = Exp(t) . (185)

This derives in trivial, commutative, right- and left- alike, plus
and minus operators in R

n,

t1 � t2 = t1 + t2 (186)
t2  t1 = t2 � t1 . (187)

A. Jacobian blocks
We express translations indistinctly for T (n) and R

n, and
note them S and T. The Jacobians are trivial (compare them
with those of S

1 and SO(2) in Section A-C1),

AdT = I 2 R
n⇥n (188)

J
T�1

T = �I 2 R
n⇥n (189)

J
T�S
T = J

T�S
S = I 2 R

n⇥n (190)
Jr = Jl = I 2 R

n⇥n (191)
J
T�v
T = J

T�v
v = I 2 R

n⇥n (192)
J
S T
S = �J

S T
T = I 2 R

n⇥n
. (193)

REFERENCES

[1] H. Abbaspour and M. Moskowitz, Basic Lie Theory. WORLD
SCIENTIFIC, 2007. [Online]. Available: https://worldscientific.com/
doi/abs/10.1142/6462

[2] R. Howe, “Very basic Lie theory,” The American Mathematical Monthly,
vol. 90, pp. 600–623, 1983.

[3] J. Stillwell, Naive Lie Theory. Springer-Verlag New York, 2008.
[4] T. D. Barfoot, State Estimation for Robotics. Cambridge University

Press, 2017.
[5] E. Eade, “Lie groups for 2d and 3d transformations,” Tech. Rep.
[6] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold

preintegration for real-time visual–inertial odometry,” IEEE Transactions
on Robotics, vol. 33, no. 1, pp. 1–21, 2017.

[7] J. Deray and J. Solà, “Manif: A micro lie theory library for
state estimation in robotics applications,” Journal of Open Source
Software, vol. 5, no. 46, p. 1371, 2020. [Online]. Available:
https://doi.org/10.21105/joss.01371

[8] J. Solà, “Quaternion kinematics for the error-state Kalman filter,”
CoRR, vol. abs/1711.02508, 2017. [Online]. Available: http://arxiv.org/
abs/1711.02508

[9] G. Gallego and A. Yezzi, “A compact formula for the derivative of a
3-D rotation in exponential coordinates,” Tech. Rep., 2013.

[10] T. D. Barfoot and P. T. Furgale, “Associating uncertainty with three-
dimensional poses for use in estimation problems,” IEEE Transactions
on Robotics, vol. 30, no. 3, pp. 679–693, June 2014.

[11] G. Chirikjian, Stochastic Models, Information Theory, and Lie Groups,
Volume 2: Analytic Methods and Modern Applications, ser. Applied and
Numerical Harmonic Analysis. Birkhäuser Boston, 2011. [Online].
Available: https://books.google.ch/books?id=hZ1CAAAAQBAJ

[12] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous Localiza-
tion and Mapping via Square Root Information Smoothing,” vol. 25,
no. 12, pp. 1181–1203, 2006.

[13] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping with fluid relineariza-
tion and incremental variable reordering,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, May 2011, pp. 3281–
3288.

[14] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on, May 2011,
pp. 3607–3613.

[15] V. Ila, L. Polok, M. Solony, and P. Svoboda, “SLAM++ - a highly
efficient and temporally scalable incremental SLAM framework,” The
International Journal of Robotics Research, vol. 36, no. 2, pp. 210–230,
2017. [Online]. Available: https://doi.org/10.1177/0278364917691110


