Lie Theorq &n Roboriessts  ( Teewition
5': The unit compley mmbens L on t%mpk of Lie grop )

%

. 4 ” 25 ” 1] Note et x4
5 % lil-_, & R ane ot within
+he game  gof
' 1
P N R X x
o o, . :
N ¢ \ /"/\D'MM R o o T @‘ v‘
o =& H = ‘ pans-7) oL
Aet 3 8, KN gl v Action s ‘ﬂ-&x'\ veero Tre -
Srprol Srpeos
Losort : =) Goasort: RR=1 A
A«om: wnit encle S’ A."P,lo“\‘: “cy*_MJLN 5'0[2)
» elomens ° '&:COSG"?S““D A elomes : R= Lecwsd+ I3]x 58 = ;g ';99
o jwvenge ¥ Wa,u) 2 jwvenge : RT
)c,vaalﬁ/l*‘i LN ACaW'Pd’F"‘“"‘: R-Ra
S5 ot guwrennin o RY | Pace of a nobot i~ the plowe : SEC2)
openeTTost ! <El?) Xit) = Rlt) Plt)
33 Ade GJ\WP o 1
ﬁ 1
"‘ gl
N/ e -
N e oo (vt fe
e anand et Aka
- ) ! o Lie Adforertire
xl L — . vectA, Gomps Do e
\,/ Pten plleste oot [
v
Lie gnovp Aofnition,
Whes & & ghovp] 4 grovp axions
Grop: =1 6 A clwars SXVE.Y
with an n% ‘e’ st
o compesiTion ; ‘Y s m G
-Wv‘*/‘a:xe =E' X=X is inQ
o ITnvense X'X = XX'mE S g
¢ Pl X (T2) = (XY) -2

1 won—commumit XoY X Yo X

Whet & A Lie d"‘""P?

,Amwpe«s%é—m + s..qwa&: m-"fnl-()

Gaovp Action
~A Grop con ot anothen
L eloment
- Given X.X, i~ &
v V

acthn

o Idewcing is the Null ociin

also o smaoth monifalof

LAY

get Vo tnsgfore

t." & suth thet

E'v=v

o comprible / cowpoitim (x:Y)v=Xx (Y v)
= Comtiavons  Tromsfol mativn Sroups

-rgpufuaa - Lie 'Uhm-‘,
Mool oot spece AE

edes
“Vecor [ 1
o

ooretad wop exponentiel neepph

. - I_"'V‘
Y ."“"c’m--»;k” ‘fb “"ML
B A atgebaey
—_— |
ANIp— 2 L /

5

a expment=l mepping o
© 373 =iw > gz giw (0°€)
8(t) = Boexplin t)
- i o =3e) =1
iwt =z i0

= F(t)= exp (iB)
- Taglan expension
021 1.~
expl iB) = 14 10+ CIOIE~ =

o ep i o wmget wonlel (Lnop on the geodksi)
v Log : Erom wenifld 12 oot Cunwnep)

= csB + isME

N - exXPwep: B oexplib)
o 8"§=I Lo . Be Lo
. . g e 9= Logtd)
5°3+8"8=0 .
i =-08"%)
#*i=iwe iR
o Lie Alyebnon
whsin i iR
. Jon
£::"s m R
» JgomuAphs
« Hat @ W'z iew
e Vet ws W)z -iiwh
. RFR=1 o Lie Atgebney 3003)
RTR+R'R =0 wx = [ 2 %% 53 1 esa)
RTR =-(FR)T DU
s T _ . sel o
TR -[:5& g =] § 8] m [33] - w[l3]
°
o bie algebnn chen R = T 4 Owtesbn R3 . 3
Rewe 28 2 ~1]e sany w= L, iy, wg] " ER
S o Isomworphism  %003) RS
- Het wh=Wx
s Vee W= wyY

2z+i8 - 6% - V%) + i6%iaen
z(l-b%h+ )+ i (0-0%1+ )

- weppy & SN

e guop FD re olgebon

eg. on 80(2) eqy. o~ S0(3)
Mk o RR=L» KK+ KR=0 o k== R
Ny ) becoeront Tﬁ:—é? => RR =~lQ7é T
‘F\l:]m}s."vﬁnﬁ"“w) R . ® . /
P R el 25 KR € skew—pmmemi
o A e el SRR = TWix ®c

a e;c,aM‘-—! meppin

A Jewewber , (v ane denfven Lv‘cMr‘M
Rzl oL Rafeldy e 23 (3)
2 Indx e 5003) =
Indx = Wi Er 1wz & + wa Es
wee E=L§53] 6[i%]
oL 588 ] sablzp?
2 Het:pls 2p(3) 5 ws w=fuly

- RR = wx
SR=Rwx we=[0 Y]
PR = Re exp(uy t)
- Ro=Rw) =7
D RUE) = @xp (Wxt)
Lot Wxt=6Ox

= exPlbx) Vee : U => R 3 D> LY w

- smilenly N ol

L i'h Ty . & expmerrtinl mopping  (oD€)

oxp G0 = Tx==dx 4 R7R = [wlx => R=RINy

5z PExp(Ox) = 1+ 65, +(01x) 4 + 01350+ \ 2 oueR...lw'm: ::);?aerplf;:;_:
| R Re=I .. RED= ex

— on et = I01-06%r) 4 I (6-6%nn) : esoLi)P - )
Rl z I ecasO+ [ 8B = feasd -sim® Lkt TWitdE UO= 0

} x [ S0  cuse. 2o u:‘[ o ')u:
f T exPrep: RID= exp(bx) cep(ro).) [hesan)
' Log mep: gy =299 (R) N =2 F (gt -
OW\"RM

- 2 & (ru3.)"

oven o serface - Qe o.locb’ux $0(2) Ex= [g 'U —> 8 &R expoessed i 163,03
- eeleclis “ o < Contegion |\ = 1+ 14, 0 fotey
- s'ﬁ‘" ey (- SR A
- = 14 IWlcsb
4 Tu]? (t-esB)
“R=eplrenle)
ex?y\mm-e meppi S\Mv»c_ = T4 Bsn0 + [u]2 -z 0)
PPM? £ Redargas Rovrion )
-7 #a0)
. ) b s |8 R= e (Bo1k) Y
Tangent TeM exp Manifold rf‘;i;;“ o = Eelud)
. A Qe
Lie algebra T € M igebr —><— - compeaitim. g et | & 0% 0 c8)
eg sl 1o e ) . aReRT)
B g S oy Atessi s
O™ {0 Y B AN = =)
ot vee Exp &) * A ey
i
Vector T € R™ v - expovential =1
excpressed Log %yl o -
- ' YJowE foBple) yoY F lyl¥Y)
1
VERY NIE ( ; oo operotor

e s
expert)



ce Te A4 = 'x eT
TeTyaw ==X TV)!
T =Ady T - compesizim.
o Lineat : matnix ~ oy Alentin
. ops s T vo To @ AN
T T '}}‘

- expomencink

."

QXMS on Lie gnoups
(W & &€& O operovans
¥OF—=

-er)w.ss as
Sy M S aeabecting
" asong

o Mergments

= O than allow us T okfine

* Jocobioms
*  Covonivaces

1:»5;(.5,z~)

an opoeA
e i
exoert]

Contesiew vactang :

Vecton Speces

oftx 1) =)
T2 2 f;:——a”: 2 e

e.9.

Df

Ao -

Lre Grops
3=&2‘)=l.\, XD T) eﬂx)ék""
DY =T T

P ol M R; (R.p)= FIR.P) = Rp

of
oR

_ m

Loy L5 Y) §(xExplz)]
T DD o ——

amenk s connt AW‘.«T,.A . R es

g et n e, hece. use Lie '
Ris a1, b o

L amR@H) P R panecres

Ladd e on
so3)
o|

kS

_ pim (RyExp(0)) R P

60 ()
_ gim (RG+6:)-P - R-P
= ew0 )

on

Lo R Ox- P

Cad ]

am =R-Px-0

o CE

= =R Px

R-(P+EP) = R-P
[13

=R

Lim
= Sp=0
L R-6P
fp20 Tgp

Rotvbations o Lie gnop

S

ELT-77] .
ELxeX) (x0T ]
Propogestio~
Y= dllX)

x['t) =XoExp (WD)

=h(}) = -‘-b +L

v (0-R)
A Mose Desivetion

fe

Emm‘yce . EKF-begeel LocaLigoction

pases (unbown) beacoris (lknown)
E~NCE P) & 36L3) bk &R Secabims !
P=EIC)(9(@Z)”_] |
Mortinn wled S connimue EKF preclictin % Die corieiee
iz fl Y, W < T D wlt 2
% - f;; %5-'@23}\82- 7?‘ 6=j,4”e denioetleS
w:mn et vy P <— FPET+ Ge4T
w~NLo. &) EKF camecton
Mesunewent volal actien

Bk = Qe X" bi H 21 dlornhov'S

K = PH™CHPHT+R)™

T~ "P’bﬁ’ﬂ vsh
13

g P

Pé= P- K (HPHT+R)I KT

A Exporertial wopplafy S SE(3)

M= 18 1] e o) = R
a = [:9], eJ ¢ 56(3)
4 0

T=717F¢°
[¢]
S MO M) = MEOM™ () =T
Mottt =
Yok =YK =g
PR XK =0 5 v gexTepe i
=7X':nx' + 9}"4)5 0 = V%= ﬁk’--j".y
A . = . of
feo = Mea/Mes = - My iy
18 = Mg Mes = - A1 Mes
s Livean. clgebna derived @ ¢ (Hontivg)
R Mg = 165 Mea

= Meg {5 it T
Mit)= 3M(t) (opE)
§A(t)= lwaiu u{t)J & $E(3) ER“
o (Ledgbe
Nete Aot s & alio “uisr”
& solution of OPE
when % = Const.

Mlt)= exp(§"t) Mito)
L=
M= expl3te)

atcume T

- .

M =E><Pt;r) E [ErPﬂfa) w’;)PJ

T=Loytm) 2 J V7Ot
L"f]LR)

Note et *
&= ou = Ly (R)

= |—eos§ —inb,
viods1e el p, ¢ )

Yo =% o(wdt) @ (wde) @ (wade )futt )

A Teeobionrn fon o pivhele waaolell
o(h)lina. buodlle  odjustment

o pnle ol
Si Wi = KTP3N59 pezs
) v
oleph :mmm.\'sc»{a)
2 el olfjective
wi= 3 kTP enwatiote bl
s ivrten fe v
A &t P m@mm
Pz (TP = [X,Y,2]7

L Su = KTP
2 sv = Kp!

2 .;3]_ [fxél Cx J‘xv
= | & .
sd Lo 31”] pe

Sous & % e

vz ¢ '
T oy
A e=zu-2 KTP
28 . g e(81@9)-e(]) o0
PRy M 57 oy
b
“ 8:{"- 5"%% +Cx T
V- "
f"‘%ﬁ“[l’
> A T
seall Tecitar: P = | = T
2 2 9w
+ e oe. 20]|3n e =
L 28 ox  ov oZ|| ia .
T S 3t :
N R e R
ax' oY ez
Eex'
S -
Lot P oy - o
pi=[Ps1] o 3 l\;

el LA T
Y 83

L Ee-€
Led 3 L
— IMtJ»A’y‘)axpzi‘)p»upzmp o gy Lompezcer
= g 5 e
st expt3mp P (1P
= 157':; o = Tp - Rpte
g L5105
= Lim o
630
¥ 5
it e B
. [wwmp)'-sm]
2 o ——————
8“1z

2
w0 & 0

T -(RptT )N
0 o
- [z —p'A
o o

) 9, 5 unttorta
- [mlmwm 2w ﬂ

. Hee

Pl:y[xl'“”a'] :[:i »,I:R :‘1
.-_38%=II_MJ -y e S
2
- 1 o o o ' -y’
‘Zo [ o x'
0o | ¥ % o
cpe 22 _[2 o &
ap’ o -fr gy
2 S
¢ aP' _ 1 oo o £ -y
3—37’[0 1 o -2 o x
o o | ¥ ‘X' °
O Il B PR
R A R A R

cen



J—fe ‘-{Mﬂ% ( MA"W«ALAVZQJ

a Mitivetion o eypﬂo;‘f Lie T}«e,y\ca W vobtics appPreTin

-  wee M"? with  won= Euclidosn conporents
ko Olaivey  opRneTS ([ Estino i /OPTingeTon) oo hse
pon= Evelitlenn  VectonS , HARD -t jopie  cuesmietns
ey e odipting SEQRD o< 0 wni-ble ,
SE(3) —» oxthigoed . ond dbtewieet =1
horel. o opue ThE dlerig eptnigetion
A Algehos SUWCONL * Combhrenion oA - et

openctivn

—

FACT
AQ??X" hos grovp SHwetwe weler operctn
$re AxA—r A}
£ conplies 4 oxdrs i M ouls e €A
1 Qusune : oA b EA
2. Assoertiitg s (axb)rC = ax(b¥c)
2. Tboreitg FeeA | erazoare=a
4. Trwerse q:fc—/{,-_r»va:aw{ =e
grp —> abeliom grovP
J\v’maﬁ ( fowe cw-ﬁ'ov-g) —_ A
sretd (4.« oprEt)

bedion )u”wa

PP

D) Jewesk s Ve

ton gpace S o bl

FALT  wop on wenphism
Anulb:—a-wmhw,‘nASeoA
\L 288YNS  Unigue elowent

tnowoset B

$§:A>B | fr)=beB VaeA]

e L
M.(,nl'.wr»/.\
* B awt b oemg A

heg oF Lpst L
o) elemet

o ooy B hes some A
Bigeetive -
o simleneosly injectie & qujective
b A = B, perulelﬂ&a_

FACT howomanphisn
o map/ morphism “hot  presewe  the grogp
is callodl howoman phism

my ‘comonphEnn
pigeetve Pamomorphism 1o coldool
iS»MvJ\Pkgw\
FACT  grovp action
-EQL): AXV—=V | gutv)=veV '
ae A

weV _’k
A Lie grevp & L Alﬁeb%
FACT  monifold
o A memidall & A -topoalogied sprce

.@mePﬁwf,m&MS Buelivlon Sprte
o ewbaddeol ™ n higher —olionsion spese
- conved
Z cmooth U spike- & odge- £gs)
»M%Mﬂ‘?ws
FALT Lie gnevp
A<g’o>ﬁammm.ﬂm

A uxioms:
o

% o A g e et s

M= Uom

Lopan cener 36 B)

v £8) YO ARME
we

A Le g p & Lie »ﬁﬁeb—‘u\ (comtil)
FALT Lie Algebre velocities . vee, hoct
XeX = xTox=¢€

0 i cowpasitin opatetal
L“. sovg sorte. multiplieeTn

o Costhont *
e thet ,ngn'ov«
neclized

‘JZ°7C"-'X-Z'"=D = vz xexs xex
XXt XLXz0 4 v¥iaXTn = XX
Lie lgebrn

iwes Cowbemin.

con be
tn teums of

P
ie., VECTOR SPACE,
vyre= Erien.
» he hetAee opareston
» het
‘["1 R“—PMIT»T"}

a vee
{ov:m—=> R™) LYY= 'rj

A Bpovercl /LogpnThen M;Wwa
2 Exponestial Meppiny
7 epL> "1’;"’5! ¥ =e><PL~r")1
~eget Lie g
wve (i) < WERIL
A Leon-’u‘fhm M“PP;”B

{Ina(): gam‘-ra:bﬁly)j

B
2 Bxpwentiod / Mogpooy +  Weafjee
- Exfw%"ml-
(Bw0 :R™> G| K= Exp( 7}
- Loéwv\r-d.w\
Loty : G=R"1 T = g (1)}
& paspertios . g oty

o expltYp = R

exp(ya)t j—=

 plasfins aeeton g © @ g
.y = X&)A‘T": 2°5<plA‘.r7‘) eé\
Ly (x?-Y) €8

vaTX = Yex =

) A*rfm)( = Exp(aT®)oX e
vart = Y 3 X =L°3(y°X')GS
LA Ackjoint  octitn

A vertorns felewents

e )C é 1’;3 (owgort spece)
\I]\-(’J\mhsfvj\mtf( >
@ ¢ e Tog (4etpr)

FACT Ao‘:‘uv‘mf action
o an sction of Lie grup on TS owa Lie lgebra

. .{Aall—):gxm»m}

s eromphe: S T s expvee e
- i

o Exp(®r)X = X Bxp(*r)
op(ir") = X op(*r) X = op(X¥rAxY)
EpA = yX A -2
. needl  ep (XoToX')= X cep(T VXt
o T = Ady (T = x T

Srwieg i Ady (07w BT
= AAag,L-rf)wM,tcr*‘)
hoswipm: Ady, ( Ady (7)) = Adyy (T7)

= Ay ( T7)
)
since Ady() is Bnes
{‘ 3 metix opersTOL Adp
st Ad’, : R"\_r RM}
o KRtz ALy
AL gxR RN RM RM
Ady T a(2Tex),
e
FALT paopaatieS
> TheadyTEL (x TV
“x®7 = (Ady TYEY
a Ay Ady
a polyy = Aolye Ady
ey SE0%)
am :[6: ﬂ . T.{r? S], Y‘l:] :

AdyT = (M TAM) V= m
— -

s plwerts of @ a’aﬁ,“\:
- B iKNAK)
I.M b) o Guia A 6
venge EL 4 ES
& composicion i o o S
‘ ’ b A — " s
(oo Gxg 2 %3 e ms-ﬁ},m*"iwén’%.
. wopp -:v-w"'. Senaoth)
FALT Tngemt Spece & Lie Algebdon\[1 % 508 Sty #BE 4L
A%
A gt See @ X TG ey et
1. M=(R. %, ,"gﬂ
A Lie Algebra TG ":“'"'"?";
1o e et
2 M= (st Py S =
™ m: D of G 3. M= qurgj 5‘--%;.&‘!5
o ok of  comgemt pace {lm%)} el
Vor Tzyt , deotel by <A 12 ci:,w,)j
. T % O
- - KAER v AR
N Y
o — X "
..... gy B
VxV—>V , ¢ -
wey  meR I
By, e LS R

3. AFet) = REO1RT  ~RT] R7e1RO \v

VI S o | méLve d ° )

v LreAtyebu)= ([[aﬂ, ML RO “,J)v
o o

Fﬁf:[ action i Lineat homomonphism bt 0

ot is Ai ronphi .

o got J?Me;!l chanectentstic - "’1“’—“" Q:{)‘;"‘Z

sm. P’WS
~* ::P Lar}] +he waomsfoanets
2 vxYyeg (Lre grop) 5 1
ya,beg' ( neal vo. ) . Mg
T - 4 ot
VAV € TyG Crengr Spe) See
A

< TCtdRe+RPT. TR ERR][E
RO Sl R_"g]
—_—

Y

/g OIvidy
/g%uq H,;Lma,vu)

newenk
Sonction such o€
o wap STE 1o cwTe

A Lie Grovp Peniwtivgg

Ve

a gien &~ Sonction
v map StaT€ o praed
$£5:802¢| Y=fx)e2¢, X5k
A Lie Grop Denivenrives beeic olo :

dvean. woppy  Swm G AL e TS A e Tvgent SpRee
o Alght  operotion Iw,a,a: T _?1}{;)){

o lofft operstim : g&}dbd P T P TeA
PAY ug‘a&;

o Stothestic process

o Optimigetion

LEMMA:

® Jacobion



o What is 'Fapo&%
open balls

- . ” s
_m,quLd ( metnic spe ) - U—))
' g >o
e K)/ 5 Suntion : ABTie Eovetion . :L
A e bell = open et :Pe?:; o )

J

Cw:fg’vffr‘. (‘M sef Compeetness (&;{:’;‘9
wq,(;}
- AT
A ropligenl <pace X=‘?.<,?;)
cotists of -A”)—céw#‘mlqh?w
of X))
s nily T of chem o X (-ZER)

stow) XE FEZ
@ Une Z weA)
}

ogﬂuv‘éyx
)Y UI 62; > Unulez.

W T s X -~
%S"“"‘P' X i 2%,
-far‘eﬁp"‘ by g,-‘ma . ""1"""0‘?4[ e
STty Lx,?/’)"
9. wesNc epe0&
(X.0l) 7) (X )
o Aflrent olrae
Fangrion  wight & ;@(:;jg;s ‘
olgrarmire +the sewe B
-NP"I%VY (R“ de>q) i = (2) %54 ,J

ex. Vi fute AL vectan ¥pes. |

oven K( |Ron,£)

% e N uu«wl,, "
“the 2w ‘eo'ﬂeﬂo} own v, &
Ziva




1812.01537v9 [cs.RO] 8 Dec 2021

arxiv

K topological viewp

A micro Lie theory
for state estimation in robotics

Joan Sola, Jeremie Deray, Dinesh Atchuthan

[
Abstract—A Lie gr;)ggis an old mathematical abstract object
dating back to the XIX century, when mathematician Sophus Lie
laid the foundations of the theory of continuous transformation
groups. Its influence has spread over diverse areas of science and
technology many years later. In robotics, we are recently expe-
riencing an important trend in its usage, at least in the fields of
estimation, and particularly in motion estimation for navigation.
Yet for a vast majority of roboticians, Lie groups are highly
abstract constructions and therefore difficult to understand and
to use.

In estimation for robotics it is often not necessary to exploit
the full capacity of the theory, and therefore an effort of selection
of materials is required. In this paper, we will walk through the
most basic principles of the Lie theory, with the aim of conveying
clear and useful ideas, and leave a significant corpus of the Lie
theory behind. Even with this mutilation, the material included
here has proven to be extremely useful in modern estimation
algorithms for robotics, especially in the fields of SLAM, visual
odometry, and the like.

Alongside this micro Lie theory, we provide a chapter with
a few application examples, and a vast reference of formulas
for the major Lie groups used in robotics, including most
Jacobian matrices and the way to easily manipulate them. We
also present a new C++ template-only library implementing all
the functionality described here.

I. INTRODUCTION

There has been a remarkable effort in the last years in
the robotics community to formulate estimation problems
properly. This is motivated by an increasing demand for
precision, consistency and stability of the solutions. Indeed,
proper modeling of the states and measurements, the functions
relating them, and their uncertainties, is crucial to achieving
these goals. This has led to designs involving what has been
known as ‘manifolds’, which in this context are no less
than the@mooth topologic surfaceg of the Lie groups where
the state representations evolve. Relying on the Lie theory
(LT) we are able to construct a rigorous calculus corli)ﬁéﬂ( to
handle uncertainties, derivatives and integrals with precision
and ease. Typically, these works have focused on th 1-
known manifolds of rotati@ and rigid motior@
When being-introduced to Lie groups for the first time, it is

A egagd them from different points of view.

see Fig. 1, involves the shape of
the—manifold—a wd—conveyX powerful intuitions of its relation
to the tangent spaceand the exponential map. The algebraic
viewpoint involves the group operations and their concrete
realization, allowing the exploitation of algebraic properties
to develop closed-form formulas or to simplify them. The
geometrical viewpoint, particularly useful in robotics, asso-
ciates group elements to the position, velocity, orientation,

L
wote et

Figure 1. Repfesentation of the relation between the Lie group and the Lie
algebra. The [Lie algebra Te M (red plane) is the tangent space to the Lie
group’s manifold M (here represented as a blue sphere) at the identity £.
Through the exponential map, each straight path vt through the origin on

the Lie algebra produces a_pat g}g\i%(vt) around the manifold which runs
along the respective onversely, each element of the group has
an equivalent in_the Eie algebra. This relation is so profound that (nearly)
all operations in the group, which is curved and nonlinear, have an exact
equivalent in the Lie algebra, which is a linear vector space. Though the
sphere in R3 is not a Lie group (we just use it as a representation that can be
drawn on paper), that in R? is, and describes the group of unit quaternions

—see Fig. 4 and Ex. 5.

and/or other modifications of bodies or reference frames. The
origin frame may be identified with the group’s identity, and
any other point on the manifold represents a certain ‘local’
frame. By resorting to these analogies, many mathematical
abstractions of the LT can be brought closer to intuitive
notions in vector spaces, geometry, kinematics, and other more
classical fields.

Lie theory is by no means simple. To grasp a minimum
idea of what LT can be, we may consider the following
three references. First, Abbaspour’s “Basic Lie theory” [1]
comprises more than 400 pages. With a similar title, Howe’s
“Very basic Lie theory” [2] comprises 24 (dense) pages, and
is sometimes considered a must-read introduction. Finally,
the more modern and often celebrated Stillwell’s “Naive
Lie theory” [3] comprises more than 200 pages. With such
precedents labeled as ‘basic’, ‘very basic’ and ‘naive’, the aim
of this paper at merely 17 pages is to simplify Lie theory even
more (thus our adjective ‘micro’ in the title). This we do in
two ways. First, we select a small subset of material from
the LT. This subset is so small that it merely explores the
potential of LT. However, it appears very useful for uncertainty
management in the kind of estimation problems we deal with
in robotics (e.g. inertial pre-integration, odometry and SLAM,
visual servoing, and the like), thus enabling elegant and
rigorous designs of optimal optimizers. Second, we explain
it in a didactical way, with plenty of redundancy so as to
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reduce the entry gap to LT even more, which we believe is
still needed. That is, we insist on the efforts in this direction
of, to name a paradigmatic title, Stillwell’s [3], and provide
yet a more simplified version. The main text body is generic,
though we try to keep the abstraction level to a minimum.
Inserted examples serve as a grounding base for the general
concepts when applied to known groups (rotation and motion
matrices, quaternions, etc.). Also, plenty of figures with very
verbose captions re-explain the same concepts once again. We
put special attention to the computation of Jacobians (a topic
that is not treated in [3]), which are essential for most optimal
estimators and the source of much trouble when designing
new algorithms. We provide a chapter with some applicative
examples for robot localization and mapping, implementing
EKF and nonlinear optimization algorithms based on LT. And
finally, several appendices contain ample reference for the
most relevant details of the most commonly used groups
in robotics: unit complex numbers, quaternions, 2D and 3D
rotation matrices, 2D and 3D rigid motion matrices, and the
trivial translation groups.

Yet our most important simplification to Lie theory is in
terms of scope. The following passage from Howe [2] may
serve us to illustrate what we leave behind: “The essential
phenomenon of Lie theory is that one may associate in a
natural way to a Lie group G its Lie algebra g. The Lie algebra
g is first of all a vector space and secondly is endowed with
a bilinear nonassociative product called the Lie bracket [...].
Amazingly, the group G is almost completely determined by g
and its Lie bracket. Thus for many purposes one can replace
G with g. Since G is a complicated nonlinear object and g
is just a vector space, it is usually vastly simpler to work
with g. [...] This is one source of the power of Lie theory.”
In [3], Stillwell even speaks of “the miracle of Lie theory”.
In this work, we will effectively relegate the Lie algebra to
a second plane in favor of its equivalent vector space R",
and will not introduce the Lie bracket at all. Therefore, the
connection between the Lie group and its Lie algebra will not
be made here as profound as it should. Our position is that,
given the target application areas that we foresee, this material
is often not necessary. Moreover, if included, then we would
fail in the objective of being clear and useful, because the
reader would have to go into mathematical concepts that, by
their abstraction or subtleness, are unnecessarily complicated.

Our effort is in line with other recent works on the sub-
ject [4], [5], [6], which have also identified this need of
bringing the LT closer to the roboticist. Our approach aims
at appearing familiar to the target audience of this paper: an
audience that is skilled in state estimation (Kalman filtering,
graph-based optimization, and the like), but not yet familiar
with the theoretical corpus of the Lie theory. We have for this
taken some initiatives concerning notation, especially in the
definition of the derivative, bringing it close to the vectorial
counterparts, thus making the chain rule clearly visible. As
said, we opted to practically avoid the material proper to the
Lie algebra, and prefer instead to work on its isomorphic tan-
gent vector space R™, which is where we ultimately represent
uncertainty or (small) state increments. All these steps are
undertaken with absolutely no loss in precision or exactness,
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Figure 2. A manifold M and the vector space Ty M (in this case = ]RQ)
tangent at the point X', and a convenient side-cut. The velocity element, X =
OX /0t, does not belong to the manifold M but to the tangent space Tx M.

and we believe they make the understanding of the LT and the
manipulation of its tools easier.

This paper is accompanied by a new open-source C++
header-only library, called manif [7], which can be found
at https://github.com/artivis/manif. manif implements the
widely used groups SO(2), SO(3), SE(2) and SE(3), with
support for the creation of analytic Jacobians. The library is
designed for ease of use, flexibility, and performance.

II. A MICRO LIE THEORY
A. The Lie group

The Lie group encompasses the concepts of group and
smooth manifold in a unique body: a Lie group G is a smooth
manifold whose elements satisfy the group axioms. We briefly
present these two concepts before joining them together.

On one hand, a differentiable or smooth manifold is a
topological space that locally resembles linear space. The
reader should be able to visualize the idea of manifold (Fig. 2):
it is like a curved, smooth (hyper)-surface, with no edges or
spikes, embedded in a space of higher dimension. In robotics,
we say that our state vector evolves on this surface, that is, the
manifold describes or is defined by the constraints imposed on
the state. For example, vectors with the unit norm constraint
define a spherical manifold of radius one. The smoothness of
the manifold implies the existence of a unique tangent space
at each point. This space is a linear or vector space on which
we are allowed to do calculus.

On the other hand, a group (G,o) is a set, G, with a
composition operation, o, that, for elements X', ), Z € G,
satisfies the following axioms,

Closure under ‘o’ XoYeg (D
Identity £ : EoX =X0E=X 2)
Inverse X! X loX=XoX1=¢ 3)

Associativity : (X o)Y)oZ=Xo(YoZ). @)

In a Lie group, the manifold looks the same at every point
(like e.g. in the surface of a sphere, see Exs. 1 and 2), and
therefore all tangent spaces at any point are alike. The group
structure imposes that the composition of elements of the
manifold remains on the manifold, (1), and that each element
has an inverse also in the manifold, (3). A special one of
these elements is the identity, (2), and thus a special one of
the tangent spaces is the tangent at the identity, which we call
the Lie algebra of the Lie group. Lie groups join the local
properties of smooth manifolds, allowing us to do calculus,
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Figure 3. The S' manifold is a unit circle (blue) in the plane C, where the unit
complex numbers z*z = 1 live. The Lie algebra s' = T S? is the line of
imaginary numbers R (red), and any tangent space T'S! is isomorphic to the
line R (red). Tangent vectors (red segment) wrap the manifold creating the arc
of circle (blue arc). Mappings exp and log (arrows) map (wrap and unwrap)
elements of ¢R to/from elements of ST (blue arc). Increments between unit
complex numbers are expressed in the tangent space via composition and the
exponential map (and we will define special operators @, © for this). See the
text for explanations, and Fig. 4 for a similar group.

Example 1: The unit complex numbers group S’

Our first example of Lie group, which is the easiest to
visualize, is the group of unit complex numbers under
complex multiplication (Fig. 3). Unit complex numbers
take the form z = cosf + isin6.

— Action: Vectors x = z + iy rotate in the plane by an
angle 6, through complex multiplication, x’ = zx.

— Group facts: The product of unit complex numbers is
a unit complex number, the identity is 1, and the inverse
is the conjugate z*.

— Manifold facts: The unit norm constraint defines the
unit circle in the complex plane (which can be viewed as
the 1-sphere, and hence the name S1). This is a 1-DoF
curve in 2-dimensional space. Unit complex numbers
evolve with time on this circle. The group (the circle)
ressembles the linear space (the tangent line) locally, but
not globally.

with the global properties of groups, enabling the nonlinear
composition of distant objects.

B. The group actions

Importantly, Lie groups come with the power to transform
elements of other sets, producing e.g. rotations, translations,
scalings, and combinations of them. These are extensively used
in robotics, both in 2D and 3D.

Given a Lie group M and a set V, we note X - v the action
of ¥Ye MonveV,
EMXV =V (X)X 0. 5)

For - to be a group action, it must satisfy the axioms,

©)
X Yooy, O

|
<

Identity : E-v
Compatibility : (Xo))- v

Common examples are the groups of rotation matrices
SO(n), the group of unit quaternions, and the groups of rigid

Figure 4. The S® manifold is a unit 3-sphere (blue) in the 4-space of
quaternions H, where the unit quaternions q* q = 1 live. The Lie algebra
is the space of pure imaginary quaternions iz + jy + kz € H, isomorphic
to the hyperplane R3 (red grid), and any other tangent space 7'S® is also
isomorphic to R3. Tangent vectors (red segment) wrap the manifold over the
great arc or geodesic (dashed). The centre and right figures show a side-cut
through this geodesic (notice how it resembles S' in Fig. 3). Mappings exp
and log (arrows) map (wrap and unwrap) elements of H, to/from elements of
S3 (blue arc). Increments between quaternions are expressed in the tangent
space via the operators &, © (see text).

Example 2: The unit quaternions group S°

A second example of Lie group, which is also relatively
easy to visualize, is the group of unit quaternions under
quaternion multiplication (Fig. 4). Unit quaternions take
the form q = cos(6/2) + usin(6/2), with u = iu, +
Juy + ku, a unitary axis and 6 a rotation angle.

— Action: Vectors x = iz + jy + kz rotate in 3D space
by an angle 6 around the unit axis u through the double
quaternion product x’ = qxq*.

— Group facts: The product of unit quaternions is a
unit quaternion, the identity is 1, and the inverse is the
conjugate q*.

— Manifold facts: The unit norm constraint defines the 3-
sphere S3, a spherical 3-dimensional surface or manifold
in 4-dimensional space. Unit quaternions evolve with
time on this surface. The group (the sphere) ressembles
the linear space (the tangent hyperplane R?® C R%)
locally, but not globally.

motion SE(n). Their respective actions on vectors satisfy

SO(n) : rotation matrix R -x=Rx
SE(n) : Euclidean matrix H-x2Rx+t
S : unit complex z-x2zx

S3 : unit quaternion q-x=qxq”

See Table I for a more detailed exposition, and the appendices.

The group composition (1) may be viewed as an action of
the group on itself, o : M x M — M. Another interesting
action is the adjoint action, which we will see in Section II-F.

C. The tangent spaces and the Lie algebra

Given X (t) a point moving on a Lie group’s manifold M,
its velocity X = 9X /Ot belongs to the space tangent to M
at X (Fig. 2), which we note Ty M. The smoothness of the
manifold, i.e., the absence of edges or spikes, implies the
existence of a unique tangent space at each point. The structure
of such tangent spaces is the same everywhere.
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Table I
TYPICAL LIE GROUPS USED IN 2D AND 3D MOTION, INCLUDING THE TRIVIAL R"™. SEE THE APPENDICES FOR FULL REFERENCE
N | QIN e S
Oie C/Qﬁ@% \lip(/\/{ Q"K?m B
‘ Lie group M, o | size | dim | X €M | Constraint TNem TER™ | Exp(T) | Comp. | Action |
‘ n-D vector ‘ R™, + ‘ n ‘ n ‘ v ER™ ‘ v—v=0 ‘ v ER™ ‘ v ER™ ‘ v = exp(v) ‘ vi+va ‘ v+ x ‘
circle St 2 1 zeC z*z =1 0 € iR feR z = exp(i6) Z1 Zo zZX
Rotation 50(2),- | 4 1 R R'R=1 6], €s0(2) 0eR =exp([f],) | R1R2 Rx
Rigid motion | SE(2),- | 9 | 3 | M=[§4] | RTR=T | [ rlea(2) | [§]€R® | exp ([ (0] "]) MiM: | Rx+t
3-sphere S3,. 4 3 qeH q*q=1 6/2 € H, 0 cR? _exp(u9/2) q1 q2 qxq*
Rotation S0(3),- | 9 3 R RTR=1 0], € s0(3) 0 cR? =exp([0],) | R1Rz Rx
Rigid motion | SE(3), | 16 | 6 | M=[§4] | RTR=1 | [P« rlese) | [§] €Rr® | exp ([ P]) | MuM: | Rxtt
V=iw WA =iw €iR Tangent TeM exp Manifold
2=2 iw ¢2R z=1iw €iR Liealgebra T €m -
log
o] oY X eM
Exp
Vector T € R™ ~Tox
0g

T8 = iR

Figure 5. Let a point z € S move at constant rotation rate w, z(t) =
coswt + isinwt. Its velocities when passing through 1 and z are in the
respective tangent spaces, 71 S* and T, S*. In the case of T,S?, the velocity
is 2 = ziw = —wsinwt + ‘wcoswt when expressed in the global
coordinates, and ?v = iw when expressed locally. Their relation is given
by zyN = z7 1z = z*z. In the case of 71 S!, this relation is the identity
WA = % = iw. Clearly, the structure of all tangent spaces is iR, which is
the Lie algebra. This is also the structure of z at the identity, and this is why
the Lie algebra is defined as the tangent space at the identity.

1) The Lie algebra m: The tangent space at the identity,
Te M, is called the Lie algebra of M, and noted m,

Lie algebra : mETeM . 8)

Every Lie group has an associated Lie algebra. We relate the
Lie group with its Lie algebra through the following facts [5]
(see Figs. 1 and 6):

o The Lie algebra m is a vector space.! As such, its
elements can be identified with vectors in R™, whose
dimension m is the number of degrees of freedom of
M.

o The exponential map, exp : m — M, exactly converts
elements of the Lie algebra into elements of the group.
The log map is the inverse operation.

o Vectors of the tangent space at X can be transformed
to the tangent space at the identity £ through a linear
transform. This transform is called the adjoint.

Lie algebras can be defined locally to a tangent point X,
establishing local coordinates for 7Tx M (Fig. 5). We shall
denote elements of the Lie algebras with a ‘hat’ decorator,
such as v” for velocities or 7" = (vt)" = v/t for general
elements. A left superscript may also be added to specify the
precise tangent space, e.g., “v" € Ty M and v/ € Te M.

The structure of the Lie algebra can be found (see Exam-
ples 3 and 5) by time-differentiating the group constraint (3).

'In any Lie algebra, the vector space is endowed with a non-associative
product called the Lie bracket. In this work, we will not make use of it.

Na:k% Wy

R

W = Y\\

Figure 6. Mappings between the manifold M and the representations of its
tangent space at the origin Te M (Lie algebra m and Cartesian R"*). Maps
hat (-)" and vee (-)V are the linear invertible maps or isomorphisms (10-11),
exp(-) and log(-) map the Lie algebra to/from the manifold, and Exp(-) and
Log(+) are shortcuts to map directly the vector space R™ to/from M.

For multiplicative groups this yields the new constraint
X lx+x- LX = 0, which applies to the elements tangent at
X (the term X1 is the derivative of the inverse). The elements
of the Lie algebra are therefore of the form,2

vi=xTl =

Lx . 9)

2) The Cartesian vector space R™: The elements 7" of
the Lie algebra have non-trivial structures (skew-symmetric
matrices, imaginary numbers, pure quaternions, see Table I)
but the key aspect for us is that they can be expressed as linear
combinations of some base elements F;, where FE; are called
the generators of m (they are the derivatives of X around the
origin in the ¢-th direction). It is then handy to manipulate
just the coordinates as vectors in R™, which we shall note
simply 7. We may pass from m to R™ and vice versa through
two mutually inverse linear maps or isomorphisms, commonly
called hat and vee (see Fig. 6),

m
T T = g T By
i=1
m

v :T:ZTiei , (1D
i=1

with e; the vectors of the base of R™ (we have e, = Ej).
This means that m is isomorphic to the vector space R™ —
one writes m = R™, or 7 = 7. Vectors T € R™ are handier
for our purposes than their isomorphic 7" € m, since they
can be stacked in larger state vectors, and more importantly,

Hat: R™ — m; (10)

A

Vee: m—R™; 7" (")

2For additive Lie groups the constraint X —X = 0 differentiates to X=X,
that is, no constraint affects the tangent space. This means that the tangent
space is the same as the group space. See App. E for more details.



Example 3: The rotation group SO(3), its Lie algebra
50(3), and the vector space R3

In the rotation group SO(3), of 3 x 3 rotation matrices
R, we have the orthogonality condition RTR = I. The
tangent space may be found by taking the time derivative
of this constraint, that is RTR + RTR = 0, which we
rearrange as

R'R=—-R'R)".
This expression reveals that RRis a skew-symmetric

matrix (the negative of its transpose). Skew-symmetric

matrices are often noted [w],, and have the form

W], = [ v 0 i‘l’m}

—wy Wg 0
This gives R'R = [w],.. When R = I we have
R = [w]

that is, [w], is in the Lie algebra of SO(3), which
we name s0(3). Since [w]|, € so0(3) has 3 DoF, the
dimension of SO(3) is m = 3. The Lie algebra is a
vector space whose elements can be decomposed into

X 7

W], =wEy + wyEy +w.E,

X
. 00 0 001 0-10
withE, = {00—1},Ey = [ 0 00},Ez = [1 0 o} the
01 0 ~100 000
generators of s0(3), and where w = (W, wy,w,) € R3
is the vector of angular velocities. The one-to-one linear
relation above allows us to identify so(3) with R —
we write 50(3) = R3. We pass from so0(3) to R® and
viceversa using the linear operators hat and vee,

Hat : R? — s50(3);
Vee: s50(3) —» R [w]

ww = [w]
v

X:OJ.

X

x = ]

manipulated with linear algebra using matrix operators. In
this work, we enforce this preference of R™ over m, to the
point that most of the operators and objects that we define
(specifically: the adjoint, the Jacobians, the perturbations and
their covariances matrices, as we will see soon) are on R"".

D. The exponential map

The exponential map exp() allows us to exactly transfer
elements of the Lie algebra to the group (Fig. 1), an operation
generically known as retraction. Intuitively, exp() wraps the
tangent element around the manifold following the great arc
or geodesic (as when wrapping a string around a ball, Figs. 1,
3 and 4). The inverse map is the log(), i.e., the unwrapping
operation. The exp() map arises naturally by considering the
time-derivatives of X € M over the manifold, as follows.

From (9) we have,
X =xvh. (12)

For v constant, this is an ordinary differential equation (ODE)
whose solution is

X(t) = X(0)exp(vt) . (13)

Example 4: The exponential map of SO(3)

We have seen in Ex. 3 that R = R[w], € TrSO(3).
For w constant, this is an ordinary differential equation
(ODE), whose solution is R(t) = Rg exp([w],, t). At the
origin Ry = I we have the exponential map,

R(t) = exp((w], t) € 50(3) .

We now define the vector @ £ uf 2 wt € R? as

the integrated rotation in angle-axis form, with angle 6
and unit axis u. Thus [0],, € so(3) is the total rotation
expressed in the Lie algebra. We substitute it above. Then
write the exponential as a power series,

ek
R =exp([0],) = ZE([U]x)k .
k

In order to find a closed-form expression, we write down
a few powers of [u],,

) =1, [u]}, = [ul,,
m? =uu’ -1, [, = —[ul,,
(]}, = —[u]%,

and realize that all can be expressed as multiples of I,
[u], or [u]2X We thus rewrite the series as,

R=I+[u], (0-46°+56°—-)
+u)? (162 - Lot Lot — ),

where we identify the series of sinf and cos 6, yielding
the closed form,

R = exp([uf], ) =T+ [u]  sinf + [u]? (1-cosf) .

This expression is the well known Rodrigues rotation
formula. It can be used as the capitalized exponential
just by doing R = Exp(uf) = exp([ud], ).

Since X(t) and X(0) are elements of the group, then
exp(v"t) = X(0)~1X(t) must be in the group too, and so
exp(v”t) maps elements v"\¢ of the Lie algebra to the group.
This is known as the exponential map.

In order to provide a more generic definition of the expo-
nential map, let us define the tangent increment T = vt € R™
as velocity per time, so that we have 7" = vt € m a point
in the Lie algebra. The exponential map, and its inverse the
logarithmic map, can be now written as,

m—-M
log: M-—om ;

"= X =exp(T")
X 7" =log(X)

(14)
15)

exp :

Closed forms of the exponential in multiplicative groups are
obtained by writing the absolutely convergent Taylor series,
exp(t") =€+ 7"+ 504 L (16)

and taking advantage of the algebraic properties of the powers
of 7/ (see Ex. 4 and 5 for developments of the exponential



Example 5: The unit quaternions group S (cont.)

In the group S? (recall Ex. 2 and see e.g. [8]), the time

derivative of the unit norm condition q*q = 1 yields
q'q=—(q"q)".

This reveals that q*q is a pure quaternion (its real part

is zero). Pure quaternions uv € I, have the form

uv = (g + juy + kuy)v = v, + ju, + kv,

where u £ ju, + Juy + ku is pure and unitary, v is
the norm, and i, j, k are the generators of the Lie algebra

53 = H,. Re-writing the condition above we have,
q=qu € TqS 3

which integrates to q = qg exp(uvt). Letting qg = 1
and defining ¢ £ u¢ = uvt we get the exponential map,

ey

The powers of u follow the pattern 1l,u,—-1,—u,1,---.
Thus we group the terms in 1 and u and identify the
series of cos ¢ and sin ¢. We get the closed form,

q = exp(ug) = cos(¢) + usin(¢) ,

which is a beautiful extension of the Euler formula,
exp(i¢) = cos ¢+isin ¢. The elements of the Lie algebra
¢ = u¢ € 53 can be identified with the rotation vector
0 € R? trough the mappings hat and vee,

60" =6/2
b ¢V =20,

where the factor 2 accounts for the double effect of the
quaternion in the rotation action, x’ = qx q*. With this
choice of Hat and Vee, the quaternion exponential

q = Exp(uf) = cos(0/2) 4+ usin(0/2)

q = exp(ug) = €s?.

Hat :
Vee :

R3 —>53;
3 = R?’;

is equivalent to the rotation matrix R = Exp(u#f).

map in SO(3) and S3). These are then inverted to find the
logarithmic map. Key properties of the exponential map are

exp((t + s)1") = exp(tT") exp(sT") (17)
exp(tT") = exp(T")" (18)
exp(—7") = exp(7") 7! (19)
exp(XT "X = Xexp(tM)X ™1, (20)

where (20), a surprising and powerful statement, can be proved
easily by expanding the Taylor series and simplifying the many
terms X1 X.

1) The capitalized exponential map: The capitalized Exp
and Log maps are convenient shortcuts to map vector elements

T € R™ (2 Te M) directly with elements X € M. We have,
Exp: R™ =M ; T+ X = Exp(1) 21
Log : M-=R"™ ; X1 =Log(X). (22)

V=%BoX=X0%
Y=frex=xeo%

& = Ady ¥r

Figure 7. Two paths, X o X8 and £ o X, join the origin £ with the point
Y. They both compose the element X with increments or ‘deltas’ expressed
either in the local frame, 8, or in the origin, €5. Due to non-commutativity,
the elements X8 and €5 are not equal. Their associated tangent vectors X7 =
Log(¥8) and €7 = Log(%$) are therefore unequal too. They are related by
the linear transform €7 = Ady %7 where Ady is the adjoint of M at X.

e Tt A -
ser; E;]) sﬁ]aj T = [ Tax]
Clearly from Fig. 6, [ 8
X = Exp(7) £ exp(1") (23)
7 = Log(X) = log(X)" (24)

See the Appendices for details on the implementation of these

maps for different manifolds. R’» ﬁ
1!
‘g' % M &\w

W, xR

E. Plus and minus operators

Plus and minus allow us to introduce increments between
elements of a (curved) manifold, and express them in its (flat)
tangent vector space. Denoted by ¢ and &, they combine one
Exp/Log operation with one composition. Because of the non-
commutativity of the composition, they are defined in right-
and left- versions depending on the order of the operands. The
right operators are (see Fig. 4-right),

V=X® 2 XoExp(*r) e M
1oy) cTyM.

right-&@ :
right-0: *r=YOX 2 Log(X~

(25)
(26)

Because in (25) Exp(*7) appears at the right hand side of the
composition, ¥ belongs to the tangent space at X (see (26)):
we say by convention® that 7 is expressed in the local frame
at XY — we note reference frames with a left superscript.

The left operators are,

left-@: Y=9T0X2Exp(T)oX c M
left-: Sr= Yo X 2 Log(YoX ') eTeM .

27
(28)

Now, in (27) Exp(°7) is on the left and we have T € T M:
we say that 7 is expressed in the global frame.

Notice that while left- and right- & are distinguished by the
operands order, the notation & in (26) and (28) is ambiguous.
In this work, we express perturbations locally by default and
therefore we use the right- forms of & and © by default.

F. The adjoint, and the adjoint matrix

If we identify ) in (25, 27), we arrive at CroX =X %,
which determines a relation between the local and global

3The convention sticks to that of frame transformation, e.g. ©x = RIx,
where the matrix R € SO(3) transforms local vectors into global. Notice
that this convention is not shared by all authors, and for example [9] uses the
opposite, 'x = RCx.



Y=loX=X0%
y=brex=x0*r

randx®r

tangent elements (Fig. 7). We develop it with (20, 25,27) as

Exp(°T)X = X Exp(*7)
exp(57") = X exp(PrM) X! = exp(X X
e =

1) The adjoint: We thus define the adjoint of M at X,
noted Ady, to be

Ady :m—m; 70— Ady(7") 2 X727, (29)
so that 7" = Adx(¥r"). This defines the adjoint action
of the group on its own Lie algebra. The adjoint has two
interesting (and easy to prove) properties,

Linear : Ady(at” + bo”) = aAdy(7")
+ bAdx(O'/\)
Homomorphism : Adx(Ady(T")) = Adxy(T") .

2) The adjoint matrix: Since Ady() is linear, we can find
an equivalent matrix operator Ady that maps the Cartesian
tangent vectors &7 = &7 and 1 = X7/,

Ady :R™ = R™ Yr—ér=Ady™r, (30
which we call the adjoint matrix. This can be computed by
applying ¥ to (29), thus writing

Ady 7= (X X1, 31)
then developing the right hand side to identify the adjoint

matrix (see Ex. 6 and the appendices). Additional properties
of the adjoint matrix are,

Xor=(AdxT)0DX (32)
Ady-1 = Ady ! (33)
Adyy = AdyAdy . (34)

Notice in (33, 34) that the left parts of the equality are usually
cheaper to compute than the right ones. We will use the adjoint
matrix often as a way to linearly transform vectors of the
tangent space at X onto vectors of the tangent space at the
origin, with 7 = Adx¥r, (30). In this work, the adjoint
matrix will be referred to as simply the adjoint.

G. Derivatives on Lie groups

Among the different ways to define derivatives in the
context of Lie groups, we concentrate on those in the form
of Jacobian matrices mapping vector tangent spaces. This
is sufficient here since in these spaces uncertainties and
increments can be properly and easily defined. Using these
Jacobians, the formulas for uncertainty management in Lie
groups will largely resemble those in vector spaces.

The Jacobians described hereafter fulfill the chain rule, so
that we can easily compute any Jacobian from the partial
Jacobian blocks of inversion, composition, exponentiation and
action. See Section III-A for details and proofs.

Example 6: The adjoint matrix of SE(3)

The SE(3) group of rigid body motions (see App. D) has
group, Lie algebra and vector elements,

weft e[ o] o

The adjoint matrix is identified by developing (31) as
Adyt=Mr"M ") =...=

= ([R [B]OX R R[], fOth +Rp| )v

:(I:[Rg]x [t]ng+Rp]>v
[t]XR} [p'
o R ||6

where we used [RO], = R[A],R" and [a], b =
— [b],. a. So the adjoint matrix is

AdM — |:R [t]x R:| c R6X6 )

_ [[t]x f}f; Rp} _ {R

0 R

1) Reminder: Jacobians on vector spaces: For a multivari-
ate function f : R™ — R™, the Jacobian matrix is defined as
the n X m matrix stacking all partial derivatives,

gfl . §f1

x T
— 6f(x) é :1 : c Rnxm (35)

ox 0L O

Oxy o 0T,

It is handy to define this matrix in the following form. Let us
partition J = [j; - - - j,,], and let j; = [22% ... 91T pe jts i-th

column vector. This column vector responds to

L 0S() s  SOxthe) — (%)
i =—F—— = lim

axi h—0 h
where e; is the i-th vector of the natural basis of R™.
Regarding the numerator, notice that the vector

vi(h) £ f(x + he;) — f(x)

is the variation of f(x) when x is perturbed in the direction
of e;, and that the respective Jacobian column is just j; =
Ov;(h)/Oh|p=o = limp_0 v;(h)/h. In this work, for the sake
of convenience, we introduce the compact form,
P L5 N (S0 VI (o ey
ox h—0 h
with h € R™, which aglutinates all columns (36) to form
the definition of (35). We remark that (38) is just a notation
convenience (just as (35) is), since division by the vector h
is undefined and proper computation requires (36). However,
this form may be used to calculate Jacobians by developing
the numerator into a form linear in h, and identifying the left
hand side as the Jacobian, that is,

o FOH) —£(6)

h—0 h h

eR" | (36)

e R" (37)

(38)
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Figure 8. Right Jacobian of a function f : M — N The perturbation vectors
in the canonical directions, 7; = he; € T'x M, are propagated to perturbation
vectors o; € Tf(X)/\f through the processes of plus, apply f(), and minus
(green arrows), obtaining o; (h) = f(X@he; )OS f(X). For varying values of
h, notice that in M the perturbations 7;(h) = he; (thick red) produce paths
in M (blue) along the geodesic (recall Fig. 1). Notice also that in A/, due to
the non-linearity of f(-), the image paths (solid blue) are generally not in the
geodesic (dashed blue). These image paths are lifted onto the tangent space
Ty X)N , producing smooth curved paths (thin solid red). The column vectors
Jji of J (thick red) are the derivatives of the lifted paths evaluated at f(X), i.e.,
Jji = limp_,0 o (h)/h. Each he; € Tx M gives place to a j; € TyayN,
and thus the resulting Jacobian matrix J = [j1 -+ jm ] € R™X™ linearly
maps vectors from Tx M = R™ to Tf(X>N =~ R™.

Notice finally that for small values of h we have the linear
approximation,

0f(x)
ox
2) Right Jacobians on Lie goups: Inspired by the standard
derivative definition (38) above, we can now use our ¢ and ©
operators to define Jacobians of functions f : M — N acting
on manifolds (see Fig. 8). Using the right- {®, ©} in place of
{+, —} we obtain a form akin to the standard derivative,*

Fx+h) — f(x) + h. (40)

“Dx A - <R @1
which develops as,
-1 o o
i WU I oBOM)
_ 9Log (f(X)l;TﬂXoExp(T))) | @lo)
=0

We call this Jacobian the right Jacobian of f. Notice that (41c)
is just the standard derivative (38) of the rather cpmplicated
function g(7) = Log (f(X)™" o f(X o Exp(7)))| Writing it
as in (41a) conveys much more intuition: it is the derivative

w of f(X) with respect to X, only that we expressed the

infinitesimal variations in the tangent spaces! Indeed, thanks
to the way right- & and & operate, variations in X and f(X)
are now expressed as vectors in the local tangent spaces, i.e.,
tangent respectively at X e M and f(X) € N [Thisderivative
is then a proper Jaco 2 RX" linearly mapping the
local tangent space (and we mark the
derivative with a local =& ¥ cnpt) Just as in vector
spaces, the columns of this matrix correspond to directional
derivatives. That is, the vector

oi(h) = f(X ©he;) © f(X) €R" (42)
4The notation % = Dg(;:) is chosen in front of other alternatives in
order to make the chain rule readable, i.e., % = %% We will later

. . : A D
introduce the lighter notation J Y4 %.
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Figure 9. Linear maps between all tangent spaces 1nv01ved in a function ) =
F(X), from M to N. The linear maps 7 = Adx *r, %o = Ady Yo,

o = ¢py &r, and Yo = DXy X, form a loop (solid) that leads to (46).
The crossed Jacobians (dashed) form more mapping loops leading to (47,48).

(see Fig. 8 again, and compare o; in (42) with v; in (37)) is
the variation of f(X) when X varies in the direction 0
Its respective Jacobian column is j; = 0o;(h)/0h|p=o.

As before, we use (4la) to actually find Jacobians by
resorting to the same mechanism (39). For example, for a 3D
rotation f : SO(3) — R3; f(R) = Rp, we have M = SO(3)
and N = R3 and so (see App. B-C5),

RDRp lim (R®O0)pcRp lim RExp(0)p — Rp
DR o 60—0 0 o 6—0 V]
. RI+[0],)p-Rp = R[O],p
= lim = lim
6—0 0 6—0 0
. “Rip], 0 3x3
= éli% ] =-R[p], €R™*.

Many examples of this mechanism can be observed in Sec-
tion III and the appendices. Remark that whenever the function
f passes from one manifold to another, the plus and minus
operators in (41a) must be selected appropriately: @ for the
domain M, and © for the codomain or image N

For small values of 7T, the following approximation holds,

YDf(X) x
DX

3) Left Jacobians on Lie groups: Derivatives can also be
defined from the left- plus and minus operators, leading to,

f(X@XT)mf(X)@ eEN . (43)

EDF(X) o, flr®X)Of(X) nxm
“Dx % T <R 9
Lo Bir) o X)) )

T T
B 0 Log (f(EXp(‘r) oX)o f(X)fl)
N or o ’

which we call the left Jacobian of f. Notice that now

7 € Te M, and the numerator belongs to Te N, thus the left

Jacobian is a n x m matrix mapping the global tangent spaces,

TeM — TeN, which are the Lie algebras of M and A (and

we mark the derivative with a global or origin ‘£’ superscript).

For small values of 7 the following holds,
EDf(X

£ £

X ——— X

AG );’_—_)‘0* Dr T f(X)

We can show from (32, 43, 45) (see Fig. 9) that left and
right Jacobians are related by the adjoints of M and N,

eEN. (45)

‘Df(X) YDf(X)
T Ady = Ad ) —? 4
DX X )"y (46)
\= 7 ,‘ut?;:,!h ] ) \‘\ Oj /\;]1
Lt T .



Figure 10. Uncertainty around a point X € M is properly expressed as a
covariance on the vector space tangent at the point (red). Using & (51), the
probability ellipses in the tangent space are wrapped over the manifold (blue),
thus illustrating the probability concentration region on the group.

4) Crossed right-left Jacobians: One can also define Jaco-
bians using right-plus but left-minus, or vice versa. Though
improbable, these are sometimes useful, since they map local
to global tangents or vice versa. To keep it short, we will just
relate them to the other Jacobians through the adjoints,

¢Dy fDY YDy

¥px ~ tpx Adx = Ady oy “7)

YDy YDy 1 DY

fpx ~ apy Ade =Ad ey @8)
where Y = f(X). Now, the upper and lower super-scripts

indicate the reference frames where the differentials are ex-
pressed. Respective small-tau approximations read,

I
fx e ) — %(XX)XT & f(X) 49)
£ HXDF(X) ¢
f(T@X)mf(X)@W (50)

H. Uncertainty in manifolds, covariance propagation

We define local perturbations 7 around a point X € M in
the tangent vector space 73 M, using right- & and S,

X=XoT, T=XCX €¢TyM . (51

Covariances matrices can be properly defined on this tangent
space at X’ through the standard expectation operator E[-],

Sy 2Err | =E[(XeX)(XoX)T] eR™™ | (52)

allowing us to define Gaussian variables on manifolds, X' ~
N(X,Xx), see Fig. 10. Notice that although we write 3y, the
covariance is rather that of the tangent perturbation 7. Since
the dimension m of T'M matches the degrees of freedom of
M, these covariances are well defined.’

Perturbations can also be expressed in the global reference,
that is, in the tangent space at the origin Te M, using left- &
and O, S

X=1dX, TZX@X“éTgML) (53)
‘7\.\

This allows global specification of covariance matrices using

left-minus in (52). For example, a 3D orientation that is known

up to rotations in the horizontal plane can be associated to

5 A naive definition 3y £ E[(X — X)(X — X)T] is always ill-defined if
size(X’) > dim (M), which is the case for most non-trivial manifolds.
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Figure 11. Motion integration on a manifold. Each motion data produces
a step 7y € Tx,_, M, which is wrapped to a local motion increment or
‘delta’ 0y, = Exp(7) € M, and then composed with Xj_1 to yield X} =
Xi—1 00, = Xp—1 0 Exp(mg) = Xp—1 ® 7% € M.

a covariance €Y = diag(ai,ag,oo). Since ‘“horizontal” is
a global specification, €¥ must be specified in the global
reference.

Since global and local perturbations are related by the
adjoint (30), their covariances can be transformed with

€Yy = Ady *Zy Ady ' (54)

Covariance propagation through a function f : M —
N;X — Y = f(X) just requires the linearization (43) with
Jacobian matrices (41a) to yield the familiar formula,

Df ., DfT

nxn
Dx Dx €R '

Sy~ s, 21 (55)

L. Discrete integration on manifolds

The exponential map X (t) = Xy o Exp(vt) performs the
continuous-time integral of constant velocities v € T, M
onto the manifold. Non-constant velocities v(¢) are typically
handled by segmenting them into piecewise constant bits
vi € Tx, , M, of (short) duration 0t;, and writing the
discrete integral

Xy = Xp o Exp(v10t1) o Exp(vidts) o -« - o Exp(vydty)
=Xy D vty B vidta D --- D Vit .
Equivalently (Fig. 11), we can define 7, = wvdt; and

construct the integral as a “sum” of (small) discrete tangent
steps T, € Ty, M, ie, X 2 XTI OT D O Tp. We
write all these variants in recursive form,

Xy = X1 © T = X1 0 Exp(7h) = Xp—1 0 Exp(vidty) .

(56)

Common examples are the integration of 3D angular rates
w into the rotation matrix, Ry = Ry_1 Exp(wydt), or into
the quaternion, qi = qj—1 Exp(wot).

III. DIFFERENTIATION RULES ON MANIFOLDS

For all the typical manifolds M that we use, we can deter-
mine closed forms for the elementary Jacobians of inversion,
composition, exponentiation and action. Moreover, some of
these forms can be related to the adjoint Ad y, which becomes
a central block of the differentiation process. Other forms for
Log, ® and © can be easily derived from them. Once these
forms or ‘blocks’ are found, all other Jacobians follow by
the chain rule. Except for the so-called left Jacobian, which



we also present below, all Jacobians developed here are right-
Jacobians, i.e., defined by (41a). By following the hints here,
the interested reader should find no particular difficulties in
developing the left-Jacobians. For the reader not willing to do
this effort, equation (46) can be used to this end, since

“Df(X) *Df(X)

“x AV Ty

Ady !
DX X

(57)

We use the notations JQ(X) = %(XX) and J¥ £ LY

We notice also that Ady ' should rather be implemented
by Ady-1 —see (33,34) and the comment below them.

A. The chain rule

For Y = f(X) and Z = g()) we have Z = g(f(X)). The
chain rule simply states,

DZ _ Dz DY
DX DY DX
We prove it here for the right Jacobian using (43) thrice,
9(f(X) @ IZT  g(f(X @ 7)) = g(f(X) ©IyT)
= g(f(X) @ IFI%T

or  JZ=J3JY. (59

with the arrows indicating limit as 7 — 0, and so J)Z( =
JfJ%. The proof for the left and crossed Jacobians is akin,
using respectively (45,49, 50). Notice that when mixing right,
left and crossed Jacobians, we need to chain also the reference
frames, as in e.g.

ZDZ B 2Dz YDY B 2DZ ¢DYy (59)
EDX YDY €DX €DY ¢€DX
¢Dz B ¢€Dz YDY B ¢DZ ¢DY 60)
XYDX YDY ¥DX €DY ¥DX’
where the first identity of (59) is proven by writing,
z
€ (50) DZ .
X X ;
9 Cr e ) 20 g(f(X) & s o7
Y
e (50) DY ¢
X X
s1Cro2) 2 g (1(0) 0 253 °r) -
zZ Yy
(43) DZ YDY ¢
X
mg(f( ))EB yDy SDX T,
and identifying (59) in the first and third rows.
B. Elementary Jacobian blocks
1) Inverse: We define with (41a)
B XDX—l
JX b é o Rmxm . 61
* DX © ©D

This can be determined from the adjoint using (20) and (31),

- L X H-Y(XE -1
33— i og((X™7) 5_ xp(7))”)
T
o -1
~ lim Log(X Exp(—7T)X~1)
T—0

.
_ A p—1\V
:limM:—Adx.

T—0 T

(62)
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2) Composition: We define with (41a)

YDXoy
XoYy A Rmxm
R € (63)
YDX o)
XoYy é Rmxm 4
J3 Dy S , (64)
and using (20,31) as above and (33),
L XY)"HXE
3V gy LOB(X) (X Bxp(r)Y)
T—0 T
-1
o Log Bxp(n)y)
T—0 T
—1 AV
i T g g, (65)
T—0 T
J§Y = =1 (66)

3) Jacobians of M: We define the right Jacobian of M as
the right Jacobian of X = Exp(7), i.e., for 7 € R™,

» "DExp(7)
JT (T) - DT
which is defined with (41a). The right Jacobian maps vari-
ations of the argument 7 into variations in the local tangent
space at Exp(7). From (41a) it is easy to prove that, for small
0T, the following approximations hold,

c Rm Xm , (67)

Exp(7T + 07) =~ Exp(7) Exp(J .(7)dT)  (68)
Exp(7) Exp(07) =~ Exp(7T + J;l(r) oT) (69)
Log(Exp(T) Exp(07)) =~ 7+ J, Y (7) 0T . (70)

Complementarily, the left Jacobian of M is defined by,
N €D Exp(T)

J,(7) Dy e R™*™ | (71)

using the left Jacobian (44), leading to the approximations
Exp(7 4 67) = Exp(J,(7)éT) Exp(T)  (72)
Exp(67) Exp(7) ~ Exp(t + J; ' (7) o) (73)
Log(Exp(67) Exp(T)) =~ 7 + JI_I(T) ot . (74)

The left Jacobian maps variations of the argument 7 into vari-
ations in the global tangent space or Lie algebra. From (68, 72)
we can relate left- and right- Jacobians with the adjoint,

Adp,y iy = I (1) 3,7 (1) . (75)

Also, the chain rule allows us to relate J,. and J,,
3, (—7) £ 35207 — gBe-mgT _ gBen) ()

X -t Xp(T
= —Jp P JERT) = Adpprd, (7)

=J,(7) . (76)

Closed forms of J ., Jr_l, J, and Jl_1 exist for the typical
manifolds in use. See the appendices for reference.

4) Group action: For X € M and v € V, we define with
(41a)

) DX v

E an
wa DX v

s (78)

Since group actions depend on the set V), these expressions
cannot be generalized. See the appendices for reference.



C. Useful, but deduced, Jacobian blocks
1) Log map: For T = Log(X), and from (70),

JhoelY) = 3-1(7) (79)
2) Plus and minus: We have
J§€BT _ JiO(EXP("')) _ AdExp(-r)_l (80)
T = Ty IR = 3,(7) 81)
and given Z=X"1oY and 7 = Y © X = Log(2),
WY =3 E I 3% =37 () 8
JP¥ = 3232 =3 ). (83

where the former is proven here

—10 *10 -1
IY = 3 G 3

(79,65,62) = J; '(t) Ady™ ! (—Ady)

r

(33,34) = =31 (1) Ady-1 1
~3.1(7) Adpp(n)
(75) = =3, (1) .

IV. COMPOSITE MANIFOLDS

At the price of losing some consistency with the Lie theory,
but at the benefit of obtaining some advantages in notation and
manipulation, one can consider large and heterogeneous states
as manifold composites (or bundles).

A composite manifold M = (My,--- , Mys) is no less
than the concatenation of M non-interacting manifolds. This
stems from defining identity, inverse and composition acting
on each block of the composite separately,

&1 X1
E2 ], x°2

Em

Xoyl
, XoY 2 : 7

X oV
(84)

—1
Xy

thereby fulfilling the group axioms, as well as a non-
interacting retraction map, which we will also note as ‘“ex-
ponential map” for the sake of unifying notations (notice the
angled brackets),
Exp(71)
Exp(r) = : :

EXp(T]u)

Log(X)
Log(X) = : :

LOg(XA{)

(85)

thereby ensuring smoothness. These yield the composite’s
right- plus and minus (notice the diamond symbols),

X & T = X oExp(r)
VS X £ Log(do)) .

The key consequence of these considerations (see Ex. 7) is
that new derivatives can be defined,® using ¢ and &,

DIRX) o [(XST)S f(X)
Dx '

(86)
(87)

(88)

T—0 T

6We assume here right derivatives, but the same applies to left derivatives.
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Example 7: SE(n) vs. T'(n)xSO(n) vs. (R™",80(n))

We consider the space of translations t € R™ and rota-
tions R € SO(n). We have for this the well-known SE(n)
manifold of rigid motions M = [RB ¢] (see Apps. C and
D), which can also be constructed as T'(n) x SO(n) (see
Apps. A, B and E). These two are very similar, but have
different tangent parametrizations: while SE(n) uses T =
(0, p) with M = exp(7"), T(n)xSO(n) uses 7 = (0, p)
with M = exp(p”) exp(6”). They share the rotational
part 6, but clearly p # p (see [11, pag. 35] for further
details). In short, SE(n) performs translation and rotation
simultaneously as a continuum, while T'(n) x SO(n)
performs chained translation+rotation. In radical contrast,
in the composite (R, SO(n)) rotations and translations
do not interact at all. By combining composition with
Exp() we obtain the (right) plus operators,

SE(m): Mar— [REPE) t+ R?me)p}
T(n)xSO(n): M®T = _REEP(G) t +1Rp]
(R",50(n)) : M& T = RES@J

where either & may be used for the system dynamics,
e.g. motion integration, but usually not <>, which might
however be used to model perturbations. Their respective
minus operators read,

[VI'R] (p2 —
SE(n): MyoM; = 1Logt]§({l}2R2)pl)}
RT (0,
T(n)xSO(n): MsoM; = Lég({)fi?f{;l))}

where now, interestingly, < can be used to evaluate
errors and uncertainty. This makes ¢, & valuable op-
erators for computing derivatives and covariances.

With this derivative, Jacobians of functions f : M — N
acting on composite manifolds can be determined in a per-
block basis, which yields simple expressions requiring only
knowledge on the manifold blocks of the composite,

Df Df
DX DX
Df(X) = : 1 . :M (89)
D& D.;CN . D}N
DX, DXy
where g—};‘f are each computed with (41a). For small values

of 7 the following holds,

D) _

DA eEN .

fXOT) — f(X) P (90)
T—0
When using these derivatives, covariances and uncertainty

propagation must follow the convention. In particular, the



covariance matrix (52) becomes

Sy AER[XSX) (XS X)] e R o1

for which the linearized propagation (55) using (88) applies.

V. LANDMARK-BASED LOCALIZATION AND MAPPING

We provide three applicative examples of the theory for
robot localization and mapping. The first one is a Kalman
filter for landmark-based localization. The second one is a
graph-based smoothing method for simultaneous localization
and mapping. The third one adds sensor self-calibration. They
are based on a common setup, explained as follows.

We consider a robot in the plane (see Section V-D for the
3D case) surrounded by a small number of punctual landmarks
or beacons. The robot receives control actions in the form of
axial and angular velocities and is able to measure the location
of the beacons with respect to its own reference frame.

The robot pose is in SE(2) (App. C) and the beacon
positions in R? (App. E),

X = {R t] € SE(2) |

| Tk 2
0 1 bk|:/yk:|ER .

The control signal u is a twist in se(2) comprising longitu-
dinal velocity v and angular velocity w, with no lateral velocity
component, integrated over the sampling time §¢. The control
is corrupted by additive Gaussian noise w ~ A(0, W). This
noise accounts for possible lateral wheel slippages us through
a value of o5 # 0,

Uy v ot
u= |us| =] 0 [ +w € se(2) (92)
| U wot
(026t 0 0
W=|0 o2t 0 e R3*3, (93)
| 0 0 o2t

At the arrival of a control u; at time j, the robot pose is
updated with (56),

X; = X; ®u; = X; Exp(u;) . (94)

Landmark measurements are of the range and bearing type,
though they are put in Cartesian form for simplicity. Their
noise n ~ A(0,N) is zero mean Gaussian,

yi=X1-by+n=RT(b,—t)+n €cR? (95)
03 0 2X2
N = 0 o2 e R**%, (96)
Yy

where we notice the rigid motion action X ~!-by, (see App. C).

A. Localization with error-state Kalman filter on manifold

We initially consider the beacons by situated at known
positions. We define the pose to estimate as X e SE(2). The
estimation error dx and its covariance P are expressed in the
tangent space at X with (51,52),

e R3
e R3*3 |

Sx2xox
PL2E[(XeX)(XYeXx)

o7
(98)
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Figure 12. SAM factor graph with 3 poses and 3 beacons. Each measurement
contributes a factor in the graph. There are 2 motion factors (black) and 5

beacon factors (gray). A prior factor on X provides global observability.

At each robot motion we apply ESKF prediction,

Xj=Xowy
P,=FP,F' +GW,G',

99)
(100)

with the Jacobians computed from the blocks in App. C,

X
F2Jy

G2JYy

P?i Du;

= ‘AdExp(uJ-)i1

=T =0, () .

At each beacon measurement y; we apply ESKF correction,

Innovation :
Innovation cow. :
Kalman gain :
Observed error :
State update :
Cov. update :

z=y,— X' by
Z=HPH' +N

K=PH'Z!

o0x =Kz

X« X ®ox (101)
P+~P-KZK', (102)

with the Jacobian computed from the blocks in App. C,
H é Jﬁ—l,bk — J‘X‘ii'bk J§—1
Y-

o0 st

——[1 RT[1], (br—t)] .

= [RT RT[1], by] {

Notice that the only changes with respect to a regular EKF
are in (99) and (101), where regular + are substituted by @.
The Jacobians on the contrary are all computed using the Lie
theory (see App. C). Interstingly, their usage is the same as
in standard EKF — see e.g. the equation of the Kalman gain,
which is the standard K = PH' (HPH' + N)~.

B. Smooting and Mapping with graph-based optimization

We consider now the problem of smoothing and mapping
(SAM), where the variables to estimate are the beacons’
locations and the robot’s trajectory. The solver of choice is
a graph-based iterative least-squares optimizer. For simplicity,
we assume the trajectory comprised of three robot poses
{Xy - X3}, and a world with three beacons {by - - - bg}. The
problem state is the composite

X: <X1)X2aX37b47b57b6>7 bk; GRQ

(103)

The resulting factor graph [12] is shown in Fig. 12. Each
prior or measurement contributes a factor in the graph. Motion
measurements from pose ¢ to j are derived from (94), while
measurements of beacon k£ from pose ¢ respond to (95),

X; € SE(2),



u;; = X; 0 X + wij = Log(X,' ;) + wij
yie = X' b4 ng

(104)
(105)

Each factor comes with an information matrix, £2; £ Wfl,

Q,; = ijl and Q;; = N;;!. The expectation residuals are,

ri(¥) = Q] (X 6 &)
ri(X) = Q2 (u; — (X6 X))

v (X) = Q)% (yir — X7 by)

prior residual :
motion residual :

beacon residual :

The optimum update step dx stems from minimizing

dx* = arg min Z r, (X @ 0x) ', (X & ox)
ox
peP

with P = {1,12,23,14, 15,25, 26,36} the set of node pairs
of each measurement (see Fig. 12). The problem is solved
iteratively as follows. Each residual in the sum (106) is
linearized to r,(X ¢ 6x) = r,(X) P J¥dx following (90),
where J ;é’ are sparse Jacobians. The non-zero blocks of these
Jacobians, that is J% . J }’, J ;(]7, J5F and J§*, can be easily
computed following the methods in Section V-A, and noticing
that by definition JL(YE) |5 o — JIXER)| o JIA)
Building the total Jacobian matrix and residual vector,

(106)

J. 0 0 0 0 0] r
J}lf JI/»‘VI; 0 0 0 0 rio
0 J¥ J¥ 0 0 0 Tos

ri4 rig
N I A IS
Xy bs 15
0 J¥ o 0o JF o ros
o J¥ o o 0 J o
| O 0 J¥ o0 0 Jpr] | 36 |
(107)

the linearized (106) is now transformed [12] to minimizing

6x* = argmin ||r + Jox||. (108)
ox

This is solved via least-squares using the pseudoinverse of
J (for large problems, QR [12], [13] or Cholesky [14], [15]
factorizations are required),

ox* =3I, (109)
yielding the optimal step 6x™ used to update the state,
X+ XPox™ . (110)

The procedure is iterated until convergence.

We highlight here the use of the composite notation in (103),
which allows block-wise definitions of the Jacobian (107) and
the update (110). We also remark the use of the SE(2) manifold
in the motion and measurement models, as we did in the ESKF
case in Section V-A.

C. Smoothing and mapping with self-calibration

We consider the same problem as above but with a motion
sensor affected by an unknown calibration bias ¢ = (c,,c,) ",
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so that the control is now @ = (v6t +c,, 0, wit+c,) " +w.
We define the bias correction function c(),

a'u —Cy
u=c(d,c)= Us
Uy — Co

€ R3 > 5e(2) . (111

The state composite is augmented with the unknowns c,

X = <C7X17X2ax3ab4>b57b6> 3
c € R?, X; € SE(2), b € R? |

and the motion residual becomes

I‘z’j(X) = QT/Q (C (ﬁm‘,(}) — (/\A,’] S .)21)) .

)

The procedure is as in Section V-B above, and just the total
Jacobian is modified with an extra column on the left,

o J3y 0 0 0 0 0
Joz g% I 0 0 0 0
Jpoo00 JP JP 0 0 0
0

0

0o Jy 0 0 I 0

T=10 JBe o0 0 0 Jr ’
ros ras
0 0 J¥ 0 0 X O
0 o0 Jy¥ 0 0 0 J
0 0 0 J¥ o0 o0 J

where Jo7/ = Q;/zJE(u”’C), with J$"7®) the 3 x 2 Jacobian
of (111). The optimal solution is obtained with (109, 110). The
resulting optimal state X includes an optimal estimate of c,
that is, the self-calibration of the sensor bias.

D. 3D implementations

It is surprisingly easy to bring all the examples above to
3D. It suffices to define all variables in the correct spaces:
X € SE(3) and u € RS = 5¢(3) (App. D), and {by,y} € R3
(App. E). Jacobians and covariances matrices will follow with
appropriate sizes. The interest here is in realizing that all the
math in the algorithms, that is from (97) onwards, is exactly
the same for 2D and 3D: the abstraction level provided by the
Lie theory has made this possible.

VI. CONCLUSION

We have presented the essential of Lie theory in a form that
should be useful for an audience skilled in state estimation,
with a focus on robotics applications. This we have done
through several initiatives:

First, a selection of materials that avoids abstract mathe-
matical concepts as much as possible. This helps to focus Lie
theory to make its tools easier to understand and to use.

Second, we chose a didactical approach, with significant
redundancy. The main text is generic and covers the abstract
points of Lie theory. It is accompanied by boxed examples,
which ground the abstract concepts to particular Lie groups,
and plenty of figures with very verbose captions.

Third, we have promoted the usage of handy operators,
such as the capitalized Exp() and Log() maps, and the plus
and minus operators &, S, ¢, & . They allow us to work on
the Cartesian representation of the tangent spaces, producing



formulas for derivatives and covariance handling that greatly
resemble their counterparts in standard vector spaces.

Fourth, we have made special emphasis on the definition,
geometrical interpretation, and computation of Jacobians. For
this, we have introduced notations for the Jacobian matrices
and covariances that allow a manipulation that is visually
powerful. In particular, the chain rule is clearly visible with
this notation. This helps to build intuition and reducing errors.

Fifth, we present in the appendices that follow an extensive
compendium of formulas for the most common groups in
robotics. In 2D, we present the rotation groups of unit complex
numbers S! and rotation matrices SO(2), and the rigid motion
group SE(2). In 3D, we present the groups of unit quaternions
S3 and rotation matrices SO(3), both used for rotations, and
the rigid motion group SE(3). We also present the translation
groups for any dimension, which can be implemented by either
the standard vector space R™ under addition, or by the matrix
translation group 7'(n) under multiplication.

Sixth, we have presented some applicative examples to
illustrate the capacity of Lie theory to solve robotics problems
with elegance and precision. The somewhat naive concept of
composite group helps to unify heterogeneous state vectors
into a Lie-theoretic form.

Finally, we accompany this text with the new C++ library
manif [7] implementing the tools described here. manif can
be found at https://github.com/artivis/manif. The applications
in Section V are demonstrated in manif as examples.

Though we do not introduce any new theoretical material,
we believe the form in which Lie theory is here exposed
will help many researchers enter the field for their future
developments. We also believe this alone represents a valuable
contribution.

APPENDIX A
THE 2D ROTATION GROUPS S AND SO(2)

The Lie group S is the group of unit complex numbers
under the complex product. Its topology is the unit circle, or
the unit 1-sphere, and therefore the name S!. The group, Lie
algebra and vector elements have the form,
™ =10, T=20.

z = cosf + isinf, (112)

Inversion and composition are achieved by conjugation z~! =
z*, and product z, o z, = Z, Zp.

The group SO(2) is the group of special orthogonal matrices
in the plane, or rotation matrices, under matrix multiplication.

Group, Lie algebra and vector elements have the form,

R:[cosa—siDGL ™ = [6] é[0—9]7 T=0. (113)

sinf cos 6 X 6 0
Inversion and composition are achieved by transposition
R~' =RT, and product R, o R; = R, Ry,
Both groups rotate 2-vectors, and they have isomorphic
tangent spaces. We thus study them together.

A. Exp and Log maps

Exp and Log maps may be defined for complex numbers of
St and rotation matrices of SO(2). For S we have,

ecC
€R,

z = Exp(#) = cosf + isinf
0 = Log(z) = arctan(Im(z), Re(z))

(114)
(115)
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where (114) is the Euler formula, whereas for SO(2),

_ __|cos® —sinf 952
R = Exp(f) = [sine o ] cR (116)
6 = Log(R) = arctan(ray,711) eR. (117)

B. Inverse, composition, exponential map

We consider generic 2D rotation elements, and note them
with the sans-serif font, Q, R. We have

R(O)"' = R(—-6) (118)
QoR=RoQ, (119)

i.e., planar rotations are commutative. It follows that
Exp(0; + 02) = Exp(61) o Exp(6s) (120)
Log(Q o R) = Log(Q) + Log(R) (121)
QoR=10g—0g. (122)

C. Jacobian blocks

Since our defined derivatives map tangent vector spaces, and
these spaces coincide for the planar rotation manifolds of S*
and SO(2), i.e., 8 = Log(z) = Log(R), it follows that the
Jacobians are independent of the representation used (z or R).

1) Adjoint and other trivial Jacobians: From (41a), Sec-
tion III-B and the properties above, the following scalar
derivative blocks become trivial,

Adg =1 eR (123)
JR' =1 ER (124
IR =J3R =1 eR  (125)
J.(0)=J,(0)=1 eR (126)
JRY0 = JRE =1 eR (127)
IR = —J8R =1 ER  (128)
2) Rotation action: For the action R - v we have,
RExp(d)v — R
g _ iy REXPOV = Ry
6—0 0
. R(I+[0],)v—Rv
= lim
6—0 0
R[0], v 9x1
= lim J =R[l],v €R (129)
and
DR
JRv = Y eR22 . (130)
Dv

APPENDIX B
THE 3D ROTATION GROUPS S® AND SO(3)

The Lie group S® is the group of unit quaternions under
quaternion multiplication. Its topology is the unit 3-sphere in
R*, and therefore its name S°. Quaternions (please consult
[8] for an in-depth reference) may be represented by either of
these equivalent forms,

q=w+ir+jyt+kz=w+v €l

m €H,

T (131)
:[w Ty z} =



where w,x,y,z € R, and 4,7,k are three unit imaginary
numbers such that 2 = j2 = k2 = ijk = —1. The scalar w is
known as the scalar or real part, and v € H), as the vector or
imaginary part. We note H, the set of pure quaternions, i.e., of
null scalar part, with dimension 3. Inversion and composition
are achieved by conjugation g~ = q*, where q* £ w — v is
the conjugate, and product q, © gy = Qg Qp-

The group SO(3) is the group of special orthogonal matrices
in 3D space, or rotation matrices, under matrix multiplication.
Inversion and composition are achieved with transposition and
product as in all groups SO(n).

Both groups rotate 3-vectors. They have isomorphic tangent
spaces whose elements are identifiable with rotation vectors in
R3, so we study them together. It is in this space R® where we
define the vectors of rotation rate w £ uw, angle-axis 6 £ uf,
and all perturbations and uncertainties.

The quaternion manifold S® is a double cover of SO(3),
i.e., q and —q represent the same rotation R. The first cover
corresponds to quaternions with positive real part w > 0. The
two groups can be considered isomorphic up to the first cover.

A. Exp and Log maps

The Exp and Log maps may be defined for quaternions
of S and rotation matrices of SO(3). For quaternions q =
(w,v) € H we have (see Ex. 5),

q = Exp(fu) £ cos(0/2) + usin(9/2) € H (132)

arctan(||v]|, w)

fu = Log(q) £ 2v eR3 . (133)

v

We can avoid eventual problems due to the double cover of q

by ensuring that its scalar part w is positive before doing the

Log. If it is not, we can substitute q by —q before the Log.
For rotation matrices we have (see Ex. 4),

R = Exp(fu) £ I +sinf[u], + (1 — cosf) [u]2X € R¥3
(134)
_RTY
fu = Log(R) & M eR?, (135)
2sind

with 0 = cos™! (%)

2

B. Rotation action

Given the expressions above for the quaternion and the
rotation matrix, the rotation action of quaternions on 3-vectors
is performed by the double quaternion product,

x' =qxq* (136)
while rotation matrices use a single matrix product,
x =Rx . (137)

Both correspond to a right-hand rotation of 6 rad around the
axis u. Identifying in them x and x’ yields the identity

w4a?—y? 22 2(zy—wz) 2(zz+wy)
R(q) = 2(zy+wz) w2 —x?4y? 22 2(yz—wz) (138)
2(zz—wy) 2(yztwz) w?—x?—y? 422
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C. Elementary Jacobian blocks

Since our defined derivatives map tangent vector spaces,
and these spaces coincide for the 3D rotation manifolds of S3
and SO(3), i.e., @ = Log(q) = Log(R), it follows that the
Jacobians are independent of the representation used (q or R).
We thus consider generic 3D rotation elements and note them
with the sans-serif font R.

1) Adjoint: We have from (31)

Adr6 = (R[6], R")" = ([(RO)],)" = RO
therefore
Adg =R, (139)

which means, just to clarify it once again, that Adq = R(q),
see (138), and Adr = R.
2) Inversion, composition: We have from Section III-B,

JR'=_Adg =-R (140)
JPF=Adg'=RT (141)
JR=1. (142)

3) Right and left Jacobians: They admit the closed forms
[11, pag. 40],

1—cosf f—sin 6
I (0) =T-—— (0], + —p5— R (143)
_ 1 1  14cos@ 9
o) =1+= —— 144
J.7(0) +2 6]+ 02 20sinf 161 (144)
1—cosf 0 —sin6
J(0) =T+ —— 0], + —pr— 61, (149)
_ 1 1 1+ cost
1 =1I—- - —_— — 2 14
where we can observe that
J, =37, Jl=3"T. (147)
4) Right- plus and minus: We have for 8 = Q & R,
IR =R(0)" 3% =17,(0) (148)
JER=7J,1(0) JFR=_J740) (149)
5) Rotation action: We have
R oy REOV—RY _
Jr” =l ] -
. RExp(@)v-Rv . R(I+[0],)v—-Rv
lim = lim
6—0 0 6—0
RO -R 0
= lim [ ]szlim vl =-R[v],
00 00 7]
(150)

where we used the properties Exp(6) ~ I+[0], and [a], b =
— [b],, a. The second Jacobian yields,

R(v+90v) —Rv

ov =R.

(151)

JRV 2 Jim
ov—0



APPENDIX C
THE 2D RIGID MOTION GROUP SE(2)

We write elements of the rigid motion group SE(2) as

R t
0 1

with R € SO(2) a rotation and t € R? a translation. The
Lie algebra and vector tangents are formed by elements of the

type

A [[9(])X g} ese(2) , T= {Z} eR?.  (153)

M = { ] € SE(2) C R3*3 | (152)

A. Inverse, composition

Inversion and composition are performed respectively with
matrix inversion and product,

RT —-R't

-1 _

ML = { Lo ] (154)
M, M, = {R%Rb ta +1Ratb} . (155)

B. Exp and Log maps
Exp and Log are implemented via exponential maps directly

~

from the scalar tangent space R® = s¢(2) = T'SE(2) — see
[5] for the derivation,

M = Exp(r) £ {Exg(‘g) V) ”] (156)
-1
T = Log(M) 2 Hogg)t] . (157)
with
V() = Slge 4+ 1 _;Ose ., . (158)

C. Jacobian blocks

1) Adjoint: The adjoint is easily found from (31) using the
fact that planar rotations commute,

AdyT = (M "M = [Rp _Q[H]X t] = Adm m :

leading to

0 ) (159)

2) Inversion, composition: We have from Section III-B,

Ady = {R _mxt] .

M = —Adm = [_OR mjﬁ (160)
T T

INMe = Adyg, T = [Izb o [i]x t”] (161)

M =1, (162)

3) Right and left Jacobians: We have from [11, pag. 36],

sin@/0  (1—cos0)/6 (9p1—p2+p2 cosO—pi sin 0) /6
Jr = | (cos0—-1)/6 sinf/0  (p1+60p2—p1 cosO—pssinb)/6>
0 0 1

(163)
sinf/0  (cos0—1)/60 (0p14p2—pa cosO—pi sinf)/6>
Jl = | (1—cos8)/6 sinf/0 (—p1+0p2+p1 cosb—pssinb)/6?
0 0 1

(164)
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4) Rigid motion action: We have the action on points p,
M-p2t+Rp, (165)

therefore and since for 7 — 0 we have Exp(7) — I+ 77,

M. . MExp(t)-p—M-p
Iu"® = lim = =[R R[], p]
(166)
INP=R. (167)

APPENDIX D
THE 3D RIGID MOTION GROUP SF(3)

We write elements of the 3D rigid motion group SE(3) as

R t

0 1 (168)

M:[ ]ESE(S)CR4X4,

with R € SO(3) a rotation matrix and t € R? a translation
vector. The Lie algebra and vector tangents are formed by
elements of the type

A [[GAX p] cse3) , T— [z] ERS.  (169)

A. Inverse, composition

Inversion and composition are performed respectively with
matrix inversion and product,

RT —-RTt

-1 _

M~ = { b ] (170)
M, M, — {RGORZ’ ta +1Ratb} . a71)

B. Exp and Log maps

Exp and Log are implemented via exponential maps directly
from the vector tangent space RS 22 s¢(3) = T'SE(3) — see
[5] for the derivation,

M = Exp(r) £ {EXI(’)(") V(f) ”] (172)
7 = Log(M) £ H;;g{))t] . (173)

with (recall for Log(M) that 8 — fu — Log(R))
vy =1+ 1= lg) T gz s

which, notice, matches (145) exactly.

C. Jacobian blocks
1) Adjoint: We have (see Ex. 6),

_ Rp+[t], RO
Adyr = (M "M~ = [ ’“}ggx } = Ady m

therefore,

(175)



2) Inversion, composition: We have from Section III-B,

BV [1; [t]ﬁR} (176)
T T
MM, _ Ry Ry [t],
IMaMo [ X BT (177)
M =1g . (178)

3) Right and left Jacobians: Closed forms of the left
Jacobian and its inverse are given by Barfoot in [10],

J,(0 .0
Ji(p.0) = [ 17 A0 (179a)
_ J Y —3750)Q(p,0)I L6
37 (p.0) = [ I ORENIO ] 79y

where J,(0) is the left Jacobian of SO(3), see (145), and

1 0 —sin 6
Q(p. 6) =5 Px + T(expx +pxOx +0xpxOx)
1-% _cosh
_2T(0?<p>< +P><0§< _30><P><9><)
1 1f§fcos0 Ofsinefg
2 64 -3 65

X (0><p><03< +03<p><0><) .

The right Jacobian and its inverse are obtained using (76), that
iS, Jr(pv 9) = Jl(_pa _9) and J:l(p7 6) = Jl_l(_pa _9)
4) Rigid motion action: We have the action on points p,

(181)

(180)

M- p£t+Rp,

therefore and since for 7 — 0 we have Exp(7) — I+ 77,

Mp_ . MExp(r) - p—M-p
Iu" =l - = [’ —Ripl.]
(182)
INMP=R. (183)

APPENDIX E
THE TRANSLATION GROUPS (R", +) AND T'(n)

The group (R™,+) is the group of vectors under addition
and can be regarded as a translation group. We deem it trivial
in the sense that the group elements, the Lie algebra, and the
tangent spaces are all the same, so t = t" = Exp(t). Its
equivalent matrix group (under multiplication) is the transla-
tion group T'(n), whose group, Lie algebra and tangent vector
elements are,

P Ao |0t n
T= {0 J €T(n), th= {0 0} €t(n), teR".
Equivalence is easily verified by observing that T(0) = I,
T(—t) = T(t)~', and that the commutative composition

I t +t2]

T Ts = [0 1

effectively adds the vectors t; and t, together. Since the sum
in R™ is commutative, so is the composition product in T'(n).
Since T'(n) is a subgroup of SE(n) with R = I, we can easily
determine its exponential map by taking (156,172) with R =1
and generalizing to any n,

It

Exp: R"—=T(n); T=Exp(t)= {O J . (184)
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The T'(n) exponential can be obtained also from the Taylor
expansion of exp(t") noticing that (t")? = 0. This serves as
immediate proof for the equivalent exponential of the (R™, +)
group, which is the identity,

Exp : R®™ - R" t=Exp(t) . (185)

This derives in trivial, commutative, right- and left- alike, plus
and minus operators in R",

t1 Sty =1t +to
t2@t1:t2—t1 .

(186)
(187)

A. Jacobian blocks

We express translations indistinctly for 7'(n) and R”, and
note them S and T. The Jacobians are trivial (compare them
with those of S! and SO(2) in Section A-C1),

Adr =1 e RXn (188)

LI | € R (189)

JIS = Jls =1 € RMXn (190)

J. =173 =1 e R™<" (191)

I = IV =1 eR™™ (192)

T =-33T=1 eR™™ . (193)
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