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Computes f(x) = max(0,x)

Does not saturate (in +region)
Very computationally efficient
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RelU. The Rectified Linear Unit has become very popular in the last few years. It computes the function
f(z) = max(0, ). In other words, the activation is simply thresholded at zero (see image above on the left)
There are several pros and cons to using the ReLUs:

« (+) It was found to greatly accelerate (e.g. a factor of 6 in Krizhevsky et al.) the convergence of stochastic
gradient descent compared to the sigmoid/tanh functions. It is argued that this is due o its linear, non- |
saturating form. I m.’ﬁﬂ- fw?ﬁd-zf&aeﬁm

« (+) Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the ReLU can |
be implemented by simply thresholding a matrix of activations at zero. '; @ ket L beppen
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« () Unfortunately, ReLU units can be fragile during training and can “die". For example, a large gradient flowing | A hewrohs will orn the scwe -Qj.:m‘
through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate |
ACtiVation FU nCtionS on any datapoint again. If this happens, then the gradient flowing through the unit will forever be zero from o methol 1: sl Nondoir  punbersS

that point on. That is, the ReLU units can ireversibly die during training since they can get knocked off the
data manifold. For example, you may find that as much as 40% of your network can be “dead” (ie. neurons
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max(0.1z, | that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting
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Consider what happens when the input to a neuron (x)
is always positive: pvt = Kf;?
Waxz
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What can we say about the gradients on w? i edwiqs
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Consider what happens when the input to a neuron is
always positive...

f (Zwizi +b)

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)
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- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

Leaky ReLU
f(z) = max(0.01z, x)

e ELV

Activation Functions

Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
will not “die”.
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[Clevert et al., 2015]

Exponential Linear Units (ELU)
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ifz>0
ifz <0

z
te) = {a (exp(z) - 1)
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0 Mosout

Maxout “Neuron”
- Does not have the
nonlinearity

- All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime
compared with Leaky ReLU

adds some robustness to noise

- Computation requires exp()

[Goodfellow et al., 2013]

basic form of dot product ->

- Generalizes RelU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

max(wlz + by, wlz + by)

Problem: doubles the number of parameters/neuron :(
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“you want unit gaussian activations? just make them so."

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

®) _ Efg®)
20 - 20 —ERY)]
/Var[z®)] this is a vanilla
differentiable function.
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Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations?
just make them so.”

1. compute the empirical mean and
variance independently for each

dimension.
N X .
2. Normalize
o _ 2™ —E®]
o Varz®]

Batch Normalization lofie and Szegedy. 2015

v Usually inserted after Fully

= Connected or Convolutional layers,

; and before nonlineariy.
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Batch Normalization lofle and Szegedy. 2015)

Normalize:
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Note, the network can leam:

And then allow the network 1o squash ® — e
the range if it wans to: i =]
B® = E[z®)]
k) — )30 4 g(k)
y® = W3® 4+ g o recover the identity
mapping

Batch Normalization fioks and Szegedy, 2015}

Input: Values of z over a mini-batch: B = {z,_);
Parameters o be leamed: 7, 3
Output: {1, = BN, 5(x.)}

- Improves gradient flow through
the network

- Allows higher learning rates

- Reduces the strong dependence
on initilization

- Acts as a form of regularization
in a funny way, and slightly
reduces the need for dropout,
maybe

mini-batch mean|

mini-batch variance|

scale and shift
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@ Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

iwe >

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!
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